Mesocrystals are non-classical crystals with a highly ordered nanoparticle superstructure, which are composed of aligned nanocrystals in crystallographic register. Because of their unique combination of nanoparticle properties and order with mesoscopic size allowing for novel collective and emergent properties, the mesocrystals possess promising applications and have received rapidly increasing interest. However, the report on the synthesis of multiple metal oxide mesocrystals is really rare and the application of mesocrystals as catalysts in chemical industry has not been found in the literature. In this project, we will first focus on the fabrication of multiple Cu-based metal oxide mesocrystals through the synergetic integration of the mesoscopical structure and Cu-based oxide composites. These mesocrystals will include binary MO-CuO and ternary M1O-M2O-CuO (M, M1, and M2 = Ti, Mn, Fe, Co, Ni, Zn, Ce, In) composites. The effect of synthesis conditions on the mesocrystal size, morphology, phase and crystallographic orientation in the interfacial region will be systematically investigated for understanding the formation mechanisms. The novel general approaches for the production of the multiple metal oxide mesocrystals will be developed. The catalytic properties of these Cu-based composite mesocrystals will be explored in Rochow reaction commonly used to produce monomers in organosilane industry and in Si hydrochlorination reaction to produce trichlorosilane (SiHCl3) used in production of Si polycrystals for Solar cell. Furthermore, the relationship between the structures of the composite mesocrystals and their catalytic performances will be unveiled, which is helpful for developing new Cu-based catalysts. The successful implementation of this project will be of great significance not only to perfect the synthesis methodology and growth theory of the mesocrystals but also to extend their industrial applications.
介晶是由纳米晶以结晶学有序的方式排列而成的纳米粒子超结构非经典晶体,由于结合了单个纳米颗粒和有序介尺度结构使得介晶产生一些新的集合特性,具有广阔的应用前景。目前关于多元金属复合氧化物介晶催化材料合成的研究报道很少,尤其是还未见到其在化学工业催化应用的研究。本项目拟通过协同介晶构筑与铜基金属氧化物来制备铜基多元金属氧化物介晶催化材料,包括MO-CuO和M1O-M2O-CuO (M、M1、M2 = Ti、Mn、Fe、Co、Ni、Zn、Ce、In),系统研究合成参数对介晶材料尺寸、形貌、晶相及界面的晶面取向的影响规律,探索其形成机理,发展简便普适的可控制备方法,完成宏量制备(千克级);选择有机硅行业单体合成的Rochow反应和太阳能多晶硅原料三氯氢硅合成的硅氢氯化反应,考察介晶的催化性能,并揭示其微结构与催化性能之间的构效关系,对于拓展介晶的合成方法、理论以及其工业应用具有重要的意义。
介晶是由排列整齐、取向均一的纳米晶组成的非经典晶体。由于其独特的结构特征和新产生的集合性质,介晶在众多领域都有很好的应用前景。目前报道的金属氧化物介晶主要是单元金属氧化物,关于多元金属复合氧化物介晶合成和应用的研究报道非常少。本项目采用无表面活性剂添加的溶剂热法,通过控制合成条件(反应温度、前驱体和表面活性剂浓度等),制备出尺寸、形貌、组成、界面结构可控的多元铜基复合金属氧化物介晶,系统研究了合成条件对介晶结构的影响规律,同时对介晶形成过程中的中间产物的结构进行了解析,揭示了介晶的形成机制;将合成的新型铜基多元介晶用于有机硅单体合成的Rochow反应和太阳能晶硅原料三氯氢硅合成的硅氢氯化反应,评价其催化性能,详细探讨了介晶结构与二甲基二氯硅烷以及三氯氢硅选择性和收率之间的构效关联,借助密度泛函理论计算进一步揭示了催化机理。本项目不仅完善了介晶的合成方法学,而且对于推动介晶的工业应用具有重要意义。项目执行期间,共计发表文章12篇,包括National Science Review、 Journal of Catalysis(2篇)、Small、Nano Research(2篇)等期刊,申请中国发明专利3项,其中授权2项,获中国颗粒学会自然科学奖二等奖一项。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
硅基复合氧化物负载Cu(I)催化剂共胶法自组装制备及其催化性能研究
蛭石基夹心金属复合氧化物催化剂的可控制备及其催化性能研究
铜-铈基复合氧化物多孔材料的制备及其催化性能的研究
可见光响应型半导体基介孔纳米晶复合微球光催化材料的可控制备及其光催化性能研究