In this project, we will carry on the research on L2 extension theorem and differential Harnack inequalities. It mainly includes the following aspects: the converse of Hörmander's L2 estimate for line bundles on an n-dimensional domain; the relations between L2 extension property and Griffiths positivity;the relations between L2 extension property and Nakano positivity; differential Harnack inequality for harmonic functions on Kähler manifolds; the applications of the differential Harnack inequality for a solution of the forward conjugate heat equation on Kähler-Ricci flow. The problems mentioned above are important problems in several complex variables and complex geometry.
本项目主要研究L2延拓定理及微分Harnack不等式相关的问题,主要包括高维区域上线丛的Hörmander L2估计的逆命题;向量丛上L2延拓性质与Griffiths正性以及Nakano正性之间的关系;Kähler流形上调和函数的微分Harnack不等式;Kähler-Ricci流的正向共轭热方程解的微分Harnack不等式的应用。上述问题是多复变和复几何领域的主要问题。
本项目中我们研究了最优L2延拓定理,回答了Ohsawa关于全纯函数L2延拓的系列文章VIII中所提出的问题在一定条件下是成立的,此外我们给出了一个反例,说明一般情况下结论是不成立的;研究了Kahler流形上调和函数的矩阵型微分Harnack不等式, 给出了Kahler流形上Green函数的张量型最大值原理; 证明了Kahler流形上具有合适的曲率及体积增长的条件下调和函数的矩阵型微分Harnack不等式;研究了非线性热方程的矩阵型Li-Yau-Hamilton估计,给出Kahler流形上具有固定Kahler度量的矩阵型Li-Yau-Hamilton估计,并且给出了Kahler流形上度量随规范化的Kahler-Ricci流演化的非线性热方程的矩阵型Li-Yau--Hamilton估计,且将这些估计都推广到了约束型的情形。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于铁路客流分配的旅客列车开行方案调整方法
武功山山地草甸主要群落类型高光谱特征
具有随机多跳时变时延的多航天器协同编队姿态一致性
基于微分博弈的流域生态补偿机制研究
一类随机泛函微分方程带随机步长的EM逼近的渐近稳定
几何流下热方程的微分Harnack不等式及其应用
几类随机微分方程的Harnack和泛函不等式及其应用研究
基于微分中值定理数值解的重力场向下延拓方法研究
Ricci流的Harnack不等式和Ricci孤立子及应用