The mining heat damage is becoming increasingly serious during the excavation of deep mineral resources and thus it is desperately needed to be studied and resolved. However, as a significant stage for deep mining heat damage control, the control of high temperature in high thermal temperature roadway is paid little attention which results in an unsatisfactory controlling effect. The proposed “composite heat-insulation zone” to insulate heat and lower temperature is constructed by spraying heat insulating material on the surface and injecting heat insulating material into the fractured surrounding rock of high-temperature roadway. The two key scientific issues involved are the heat transfer pattern of fractured rock mass and the heat insulation mechanism of “composite heat-insulation zone”. Theoretical modelling, physical and numerical simulations are to be adopted to address these two main issues. On the basis of constructing heat transfer model for fractured rock mass, analyzing its heat transfer characteristics and figuring out its heat transfer pattern, the heat transfer model of “composite heat-insulation zone” structure can be established and the coupling effect of inner and outer heat-insulation zone in fractured rock mass can then be investigated and ultimately the heat insulation mechanism of “composite heat-insulation zone” structure is revealed. More specifically, experiments about the influences of fissure scale and other factors on the heat insulation effect of “composite heat-insulation zone” will be conducted and a design method of constructing “composite heat-insulation zone” structure in fractured rock mass will then be formed. By applying and verifying the results on field, the theory and technique of constructing “composite heat-insulation zone” on fractured rock mass is finally integrated.
深部矿产资源开发面临的矿井热害问题呈现越来越严重之势,亟待研究解决,而作为深矿井热害治理的重要环节,高地温巷道热环境治理却得不到足够重视,导致采场热害治理效果大受影响。申请人提出的高地温巷道围岩喷注隔热材料构建“复合阻热圈”结构隔热降温概念,其关键科学问题是:裂隙岩体传热模式和“复合阻热圈”结构隔热机理。围绕这两个科学问题,项目拟综合应用理论建模、相似模拟实验和数值试验等方法,在建立裂隙岩体传热学模型,分析裂隙岩体传热特征,掌握其传热模式的基础上,进一步建立裂隙岩体“复合阻热圈”结构的传热学模型,研究裂隙岩体内外阻热圈的复合效应,揭示“复合阻热圈”结构的隔热机理;实验研究裂隙尺寸等各因素对“复合阻热圈”结构隔热效果的影响规律,提出裂隙岩体喷注隔热材料构建“复合阻热圈”结构隔热的设计方法;将研究成果付诸现场应用和验证,形成裂隙岩体喷注隔热材料构建“复合阻热圈”结构隔热降温的理论和技术。
针对高地温及深循环热水上涌条件下的高温矿井,提出裂隙围岩中构建 “复合阻热圈”隔热结构,有效地阻止岩块热传导及热水热对流向风流散热。本项目系统的研究了岩体裂隙表征及岩体传热模式、“复合阻热圈”结构隔热机理与内外阻热圈复合效应、“复合阻热圈”结构喷注浆材料研发、隔热效果影响因素及喷注浆材料工程应用。取得的主要成果有:.(1)结合工程岩体和岩石试样的裂隙特征统计分析,提出了一种适应单裂隙非达西渗流描述的粗糙度表征方法,基于钻孔基本测量尺度-裂隙条数法,进一步完善了工程岩体裂隙特征的间接描述方法。根据基质岩块-裂隙介质模型,建立裂隙岩体热传导和热对流的传热学模型,开展了砂岩非稳态温度场圆柱体试样导热系数测量方法研究,分析了局部热平衡和非局部热平衡条件下水-岩对流换热规律,为掌握裂隙岩体传热模式奠定了基础。.(2)深入调研我国高温矿井热害现状,掌握了高温矿井的类型及其致热成因,明确了“复合阻热圈”结构的应用对象。通过改进的高温井巷相似模拟试验系统,研究了高地温及热淋水条件下风流温湿度及焓值变化的率定律。明确了裂隙岩体中基质传热和裂隙传热各自对岩体传热的贡献。建立了具有阻热圈结构的高地温巷道围岩非稳态导热数学模型,研究了“复合阻热圈”结构隔热的复合效应,揭示了“复合阻热圈”结构隔热机理。.(3)以粉煤灰为基本掺量,研制了粉煤灰基矿用隔热喷浆材料和矿用隔热注浆材料。通过相似模拟和数值计算,对比了高地温喷浆隔热围岩和非喷浆隔热围岩温度场的变化特点,计算了阻热结构在不同时间内的热量减排量,验证了材料的隔热效果,同时研究了各因素对“复合阻热圈”结构隔热的影响规律。.(4)为了实现巷道破碎程度和浆液性能相互匹配,开发了基于围岩破碎等级的快速智能注浆系统,实现了注浆材料配比和注浆参数的快速确定。将研究成果付诸现场应用和验证,建立了矿井喷注浆系统和工艺,形成了破碎围岩喷注浆支护和隔热的理论和技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
拥堵路网交通流均衡分配模型
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
热-水-力耦合作用下裂隙岩体微生物阻渗机理研究
基于微生物矿化成岩的裂隙岩体阻渗性能研究
裂隙岩体水-岩-热耦合非线性动力学模型研究
裂隙岩体渗透性“结构-基质-应力”协同控制机理研究