High-precision autonomous navigation is a key technology for aircrafts cluster collaborative operations under the systems confrontation condition in modern warfare. To enhance the navigation accuracy of the airborne based equipment, the collaborative navigation technology for aircrafts cluster formation flights was proposed. The airborne based data link is used to achieve communication among aircrafts in the cluster network, measure the mutual ranging information and inform the local information of each node in the cluster. The ranging measurement network are formed and used to constrain the positioning error of airborne based navigation equipment of each node in three dimensions, which could eliminate the deviation of each node and improve the navigation precision of the airborne equipment significantly. A Distributed Instant Collaborative Navigation Algorithm based on Flat Structure is designed, which does not depend on a single network node, and can adapt to the admission and evacuation of the network nodes flexibly, thus it has strong robustness and environmental adaptability. The influence of the aircrafts cluster Network geometry and positioning errors of airborne based navigation devices at different nodes on improving the Precision of Collaborative Navigation is researched. And then, the techniques of system fault diagnosis and isolation of aircrafts cluster network nodes and fault nodes navigation information recovering are researched. After that, the simulation analysis and experimental verifications are conducted. The proposed Collaborative Navigation schemes could improve navigation accuracy significantly by taking full advantage of data link ranging information rather than relying on satellite navigation systems, which could thus reduce the system costs and maintain the navigation system autonomy. Consequently, the proposed Collaborative Navigation technique could bring great benefits in enhancing the airborne based navigation equipment positioning accuracy for aircrafts cluster formation flights.
针对现代战争中体系对抗条件下飞机集群协同作战时的高精度自主导航问题,提出了一种飞机集群编队飞行的协同导航技术。通过机载数据链实现机间通信并实时测量和通报集群网络各节点的位置和相互测距信息,利用该测距网络对机载导航设备的位置误差进行三维约束,消除各节点异向偏差,从而提升机载设备的导航精度。课题将设计一种基于扁平结构的机群分布式复制型即时协同导航算法,该算法不依赖于单个网络节点,且能灵活适应节点的进入与离开,因此具有很强的鲁棒性和环境适应性。在此基础上,探究集群网络的几何构形及节点位置和机载导航设备误差对协同导航精度提升效果的影响,研究网络节点的故障诊断隔离方法和故障节点的导航信息重构方法,之后进行仿真分析和实验验证。由于本课题提出的分布式协同导航方案充分利用数据链测距信息且不依赖卫星导航系统,可在现役装备基础上大幅提升导航精度而无需额外增加设备,同时能保持导航自主性,因此具有十分重要的意义。
无人飞行器的集群飞行是现代信息化、网络化体系对抗的关键环节,自主的精确定位和导航技术是其中的关键技术。本课题针对无人集群协同飞行时导航设备精度与成本间的矛盾,提出了基于网络测量的自主协同导航方法,探究了通过信息协同提升飞行器集群自主导航精度的根本机理;设计了基于测距网络和测角网络的协同导航系统模型和算法,揭示了信息协同对集群导航精度提升效果的规律,并对协同导航的精度和集群几何构形进行了深入研究和分析。课题取得的重要研究结果主要包括:. 1. 设计了基于分布式复制型系统架构的飞行器集群组网协同导航方案。在该架构下,参与协同导航的所有网络节点平行,既“无中心节点”,又皆为“中心节点”,并且网络节点可以灵活进入与退出而不会对整个网络产生根本影响,有利于在实际中进行应用。. 2. 分别设计了基于测距网络、测角网络、测距网络+测角网络的组网协同导航方法,并针对不同类型量测方程进行了有效约束分析和平移、旋转约束方程的设计,在此基础上从数学模型和物理意义角度对协同导航的量测约束、三维空间/二维平面切换时数学特征的变化等机理进行深入研究和解释,为相关领域的研究人员提供重要参考。. 3. 探究了集群网络几何构形影响协同导航定位精度的机理,引入精度因子的概念将几何构形的影响进行量化,对几种常用的几何构形进行精度因子分析计算,为相关领域的研究工作提供重要参考。. 4. 对研究的基于测距网络、测角网络、测距+测角网络的飞行器集群协同导航技术进行了半物理仿真验证。结果表明,对于n个节点组成的集群网络,经过协同导航可将定位精度最多提高根号n倍。. 本课题的研究成果可用于多型无人飞行器协同组网执行作战任务的场合,通过信息协同,大幅提升自主导航精度,充分发挥无人飞行器的优势,提升协同作战效能和体系对抗能力,具有非常重要的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于多模态信息特征融合的犯罪预测算法研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
多空间交互协同过滤推荐
多源数据驱动CNN-GRU模型的公交客流量分类预测
类脑感知定位机理的无人机密集集群编队协同导航方法
基于势博弈的集群系统编队控制方法研究
基于跳频扩谱的卫星导航测距新方法
基于分布式天线的宽带相位测距机制与方法研究