The detection of the pollutant, the pathogenic microorganism and other harmful substance by using chip sensing technology with low-cost is significant for national defense and people’s life. By using the micro fluidic technology, the micro fluidic system is integrated with the high-Q optical resonators on the LTCC substrate. This not only provides a novel idea to realize the optical integrated micro fluidic sensing elements, but also constructs the foundations for chip-based photo-communication and sensing system applications with lab-on-chip. In this project, in order to realize the integrated optical microresonator-based micro fluidic sensing chip on the LTCC substrate, we theoretically research the sensing mechanism of the micro resonators for the surroundings detection in a micro fluidic environment. The robustness enhancing mechanism of the resonators coupling system (RCS) is researched. Also, the physical model of the packaged RCS is established. Moreover, the package technology is proposed and finally the portable micro resonator unit is realized. We also research the dynamic control mechanism for the micro resonators optical features based on the thermal modulation. The fabrication technology of the optical fiber integrated in the LTCC substrate is proposed. And the fiber-integrated-LTCC module with thermal tunableness is finally realized. Through optimizing the LTCC fluidic channel fabrication technology, the micro resonators fiber system is embedded in the LTCC fluidic channel. And then, the LTCC-based optical micro resonator integrated micro fluidic sensing chip is realized, which provides basis for the novel lab-on-chip researches ranging from LTCC photo-communication chips to LTCC integrated sensing system.
在低成本芯片单元实现污染物、病原微生物等有害物质的快速检测,对国防、生产、生活有重要意义。应用微流控技术,以高Q光学微腔为敏感单元,在低温共烧陶瓷(LTCC)基板的微流通道内实现光学微腔微流控系统集成,不仅为实现集成光子微流控传感芯片提供新思路,也是构建集成传感片上实验室和片上光通信系统的基础。本项目以LTCC单片集成光学微腔微流控传感芯片为牵引,应用FDTD等方法,理论研究高Q光学微腔在微流控环境下对周围物质的敏感机理及光学微腔鲁棒性控制机理,建立微腔耦合封装结构的物理模型,提出微腔封装工艺,提升其鲁棒性。提出光纤与LTCC基板的集成制造工艺,实现LTCC与微腔光纤系统的集成模块制造。优化LTCC流体通道制造工艺,进行微腔光纤系统在LTCC流体通道的无损集成,实现基于LTCC的光学微腔集成微流控传感芯片,为研发基于LTCC片上实验室的新型光通信和传感系统集成芯片打下基础。
在低成本芯片单元实现污染物、病原微生物等毒害人体物质的快速检测,对国防、生产、生活均有重要意义。应用微流控技术,以高Q光学微腔为敏感单元,在低温共烧陶瓷(LTCC)多层基板上实现光学微腔微流控系统集成,不仅为实现集成光子微流控传感芯片提供新思路,也是构建集成传感系统片上实验室和片上光通信系统的基础。本项目以LTCC单片集成光学微腔微流控传感芯片为牵引,理论研究高Q光学微腔在微流控环境下对周围物质的敏感机理,研究光学微腔鲁棒性控制机理,建立光学微腔-耦合体系-封装结构的物理模型,提出微腔封装工艺,实现便携式微腔单元。研究热场对微腔光学特性的动态调控机理及单片可控实现方式。提出光纤与LTCC基板的集成制造工艺,实现温度可调的LTCC光纤模块制造。优化LTCC流体通道制造工艺,进行微腔光纤系统在LTCC流体通道的无损埋置,实现基于LTCC的光学微腔集成光流控传感芯片,为研发新型基于LTCC片上实验室的光通信和传感系统集成芯片打下基础。在低成本芯片单元实现污染物、病原微生物等毒害人体物质的快速检测,对国防、生产、生活均有重要意义。应用微流控技术,以高Q光学微腔为敏感单元,在低温共烧陶瓷(LTCC)多层基板上实现光学微腔微流控系统集成,不仅为实现集成光子微流控传感芯片提供新思路,也是构建集成传感系统片上实验室和片上光通信系统的基础。本项目以LTCC单片集成光学微腔微流控传感芯片为牵引,理论研究高Q光学微腔在微流控环境下对周围物质的敏感机理,研究光学微腔鲁棒性控制机理,建立光学微腔-耦合体系-封装结构的物理模型,提出微腔封装工艺,实现便携式微腔单元。研究热场对微腔光学特性的动态调控机理及单片可控实现方式。提出光纤与LTCC基板的集成制造工艺,实现温度可调的LTCC光纤模块制造。优化LTCC流体通道制造工艺,进行微腔光纤系统在LTCC流体通道的无损埋置,实现基于LTCC的光学微腔集成光流控传感芯片,为研发新型基于LTCC片上实验室的光通信和传感系统集成芯片打下基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
基于SSVEP 直接脑控机器人方向和速度研究
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
基于高Q平面集成光学微谐振腔的多目标并行光微流控生化传感芯片基础研究
微流控光学变焦透镜阵列集成芯片的研制
面向微流控光学传感的管状微腔内通道微纳构筑
集成化细胞分析微流控芯片研制