Alien biological invasion from ballast water has brought huge losses to the shipping countries. The International Convention of ballast water comes into force soon, so rapid on site detection of ballast water is becoming increasingly urgent. Microfluidic analysis technology shows the great potential in the detection of micropartices and nanoparticles. Our group has studied the activities of microalgae cells in the last NSFC project. However this research still cannot meet the demands of the Convention on fast sampling of ballast water and high sensitive detection of size and concentration of living micro particles and species identification. Based on this, this project will study the mechanism and method of sampling and operation of micro particles on a microfluidic chip and high sensitive sensors, and thus analyze the ballast water comprehensively and quickly. The specific contents are as follows: 1, the mechanism and methods of rapid sampling of ballast water and high throughput transport of micro particles; 2, the mechanism of tuned impedance pulse sensor and the method of detection of sizes and concentrations of the micro particles; 3, the mechanism of near field interference fluorescence microscopy imaging on a microfluidic chip and method of micro particles recognition; 4, the mechanism of GFP fluorescence enhancement on a microfluidic chip and the method of bacteria identification, and ultimately realize a fast micro total analysis method of ballast water. Our group has published serveral papers and patents, and which has advantages on research between microfluidic and nanofluidic and ship and ocean engineering.
船舶压载水引入的外来生物入侵已给航运国家带来巨大损失,国际压载水公约正式生效在即,对压载水现场快速检测需求也日益迫切,微流控分析技术在微纳颗粒检测中极具潜力,本课题申请人在前期项目中已对压载水中微藻活性进行了研究,然而还远不能满足公约对压载水中多样性存活生物及指标微生物的快速采样、操控及其尺寸、浓度的高灵敏检测与种类识别的需求,基于此,本课题拟研究微流控芯片上微颗粒快速采样、高通量输运及高灵敏传感的机理与方法,具体研究内容为:1、压载水微颗粒快速采样与高通量输运机理与方法研究;2、微通道可调谐阻抗脉冲传感机理及微颗粒尺寸与浓度检测方法研究;3、微流控芯片上近场干涉荧光显微成像机理及微颗粒识别方法研究;4、微流控芯片上GFP荧光增强机理及菌群检测方法研究,最终实现一种船舶压载水现场快速微全分析方法。本课题组已发表多篇相关论文及专利,在微纳流控与船舶海洋工程交叉研究领域具有特色及优势。
本项目按照计划完成了研究目标,主要在微流控芯片上对船舶压载水中多样性生物微颗粒的快速采样、高通量输运、宽尺度范围高灵敏度检测、种类识别的机理与方法进行研究,建立一种船舶压载水中现场快速微全分析方法,以满足对船舶压载水中多样性生物及指标微生物的快速采样、尺寸、浓度检测与种类识别的需求,为船舶压载水现场快速检测奠定坚实的理论及实验基础。探究了压载水微颗粒快速采样与高通量输运机理与方法,研究了微通道可调谐阻抗脉冲传感机理及微颗粒尺寸与浓度检测方法,分析了微流控芯片上近场干涉荧光显微成像机理及微颗粒识别方法,以及微流控芯片上荧光增强机理及菌群检测方法,从而实现了一种船舶压载水现场快速微全分析方法。共发表学术论文16篇,包括SCI检索论文15篇,EI检索论文1篇,申请并授权国家发明专利39项,其中已授权发明专利15项,申请发明专利24项,除此之外,本项目还研制了船舶压载水现场快速检测原理样机1套。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
基于光流控芯片的船舶压载水活性微藻快速检测机理研究
全回转起重船舶安全作业压载水动态调拨机理与优化理论研究
液相高压脉冲放电处理船舶压载水机理的研究
典型高级氧化工艺治理船舶压载水有害生物及机理研究