With the development of modern electrical contact applications towards the directions of high efficiency, minimization and integration, et al, the compromise problem between required high electrical conductivity and effective lubrication, as well as the decreases of interface reliability and service life of electrical contact systems affected by wear and corrosion of materials become increasingly prominent. Since the confined gap of the electrical contact interface is usually at the nanoscale, the processes of current conduction through lubricated interfaces, as well as the degradation and failure of materials are very complicated and difficult to analyze.Investigations on revealing the behaviors and underlying mechanisms of the relevant processes conducted by researchers are still inadequate. Towards solving these problems, the present project will carry out investigations mostly based on self-made techniques to reveal the behaviors of the lubrication, electrical conduction and stability properties, as well as damages due to wear and corrosion of the electrical contact interfaces with nanoscale lubricant films. The inherent relationships between the lubrication and conduction properties of the lubricant film, and influencing factors, such as the physical and mechanical properties of contacting pair materials, lubrication states, lubricant distribution and flow in the contact region, will be made clear at the micro/nano scales. The evolution and degradation mechanisms of the electrical contact interfaces with nanoscale lubricant films due to wear, corrosion and interfacial destabilization will be understood. Based on cross-disciplines of tribology, dielectric physics, material, corrosion and electrochemistry, theoretical models of the degradation and failure of the electrical contact interfaces with nanoscale lubricant films due to wear and corrosion will be constructed. Thereby, theoretical supports will be provided for the design, manufacture and optimization of novel electrical contact systems and materials.
随着现代电接触应用不断向高效率、微型化和集成化等方向发展,其接触界面要求的高导电性和有效润滑难以同时满足、材料磨损和腐蚀使系统可靠性降低、服役寿命缩短等问题日益突出。由于电接触受限间隙常处于纳米量级,润滑界面电流传导和材料退化失效过程错综复杂,分析难度大,国内外研究者对相关过程的规律和机理研究尚不充分。鉴于此,本项目主要利用自制设备,研究电接触纳米级润滑膜界面的润滑和导电性能、稳定性以及磨损和腐蚀破坏规律;从微纳尺度明确电接触界面润滑和导电性能与接触副材料物理力学特性、润滑状态、润滑剂分布和流动等因素的内在联系;阐明电接触条件下磨损、腐蚀及界面失稳诱导纳米级润滑膜界面性能演变和退化机制。在摩擦学、电介质物理学、材料学和腐蚀电化学等学科交叉的基础上,构建电接触纳米级润滑膜界面磨蚀退化和失效理论模型,为新型电接触系统材料开发设计、制造和优化提供理论支持。
本项目以自制摩擦副表面电荷注入系统、原子力显微镜、电化学工作站等设备为主要实验手段,研究带电润滑膜界面的润滑性能、稳定性以及磨蚀破坏规律;重点围绕典型和新型二维材料润滑薄膜在带电和退化条件的润滑性能演变规律和作用机制,以及摩擦副表面电荷调控及其与润滑性能的内在关联两个问题开展工作,从不同尺度明确带电润滑界面摩擦润滑性能、界面稳定性与不同润滑材料和润滑状态等因素的内在联系;阐明带电条件下磨损、腐蚀及界面失稳诱导纳米级润滑膜界面性能演变和退化机制,构建典型纳米润滑膜界面磨蚀退化和失效模型,为高性能新型带电润滑系统设计制造提供支持。相关研究工作在Nano Letters(IF:12.1)、ACS Applied Materials & Interfaces (IF: 8.1)、和ASME Journal of Tribology等杂志发表SCI论文15篇,其中IF>7论文4篇,Friction封面文章1篇;申请中国发明专利4项(有申请号),在国内外学术会议上做邀请报告11次(国际会议9次;大会报告2次)。获得中国机械工程学会摩擦学分会青年学者奖(2017)、温诗铸枫叶奖(2016)、2011-2016年中国机械工程学会先进工作者、清华大学SRT计划优秀指导老师奖等荣誉。申请人入选2015年国家千人计划青年项目和清华大学基础研究青年人才计划。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
海水润滑聚合物-金属界面纳米结构转移膜对腐蚀磨损行为的影响机制
三维导电纳米纤维接触引导与电刺激协同作用对细胞行为的影响
金属生物膜的形成机理及其润滑和耐磨蚀特性的研究
纳米级润滑薄膜对界面接触力学特性影响的研究