In face of the pressing demand for wheel-rail vibration and noise control in high-speed railway and the lagged theoretical study, the Program aims to study the basic theory of periodic structure vibration characteristics and vibration control of high-speed railway track structure. The Program, on account of the theory of phononic crystal, studies the vibration band gaps properties of track periodic structure in high-speed railway and analyzes the vibration control based on band gaps principle by means of calculation on periodic structure vibration band gaps and band gaps control. Specifically, the Program mainly comprises of: setting up a calculation model for vibration band gaps in infinite periodic track structure of high-speed railway based on transfer matrix method and Bloch theory; verifying the model by use of analysis method for vibration transfer characteristics; exploring the impacts of track foundation stiffness and rail temperature force on vibration band gaps properties; implementing directive band gaps control on target band in the light of the control principle for band gaps in photonic crystal; verifying the vibration control performance of optimal multiple oscillators by use of analysis method for vibration transfer characteristics; carrying out quantitative structural design on the optimal multiple oscillators accepted in the verification, and verifying vibration reduction effect of multiple-oscillator structure by employing analysis method for vibration transfer characteristics. The findings can further upgrade the analysis method for the design of high-speed railway track structure, and provide new scientific basis and technical advice for vibration control of track structure in high-speed railway.
针对高速铁路轮轨振动与噪声控制的迫切需求以及相关理论研究的滞后,以高速铁路轨道周期结构振动特性及其振动控制为研究对象进行基础理论研究。本项目基于声子晶体理论,从周期结构振动带隙计算与带隙调控等方面,开展高速铁路轨道周期结构振动带隙特性及基于带隙原理的振动控制分析。主要包括:利用传递矩阵法及布洛赫(Bloch)定理,建立无限周期高速铁路轨道结构的振动带隙计算模型,结合振动传递特性分析法验证模型的正确性,探讨轨道基础刚度及钢轨温度力对振动带隙特性的影响;采用声子晶体带隙调控机理,针对目标频段,进行定向带隙调控,并结合振动传递特性分析法检验最优多振子的振动控制效果;对经检验的最优多振子进行定量结构设计,再次结合振动传递特性分析法验证多振子结构的减振效果。该研究成果可进一步完善高速铁路轨道结构设计分析方法,为高速铁路轨道结构振动控制提供一种新的科学依据和技术指导。
针对高速铁路轮轨振动与噪声控制的迫切需求以及相关理论研究的滞后,以高速铁路轨道周期结构振动特性及其振动控制为研究对象进行基础理论研究。本项目基于声子晶体理论,从周期结构振动带隙计算与带隙调控等方面,开展高速铁路轨道周期结构振动带隙特性及基于带隙原理的振动控制分析。建立高速铁路周期结构振动带隙理论模型,分析了周期轨道结构振动带隙特征,研究了轨道结构带隙行为,阐明了轨道结构带隙形成机理。并开展了高速铁路弹性波带隙验证研究,分别从有限元方法和现场试验出发,验证了轨道结构振动带隙特征。分析了随机失谐特征对轨道结构振动带隙的影响规律,结果表明随机失谐可提高带隙宽度,为减振降噪提供新思路。基于声子晶体局域共振带隙机理,提出了钢轨局域振子结构以控制钢轨噪声。以上究成果可进一步完善高速铁路轨道结构设计分析方法,为高速铁路轨道结构振动控制提供一种新的科学依据和技术指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
钢筋混凝土带翼缘剪力墙破坏机理研究
城市轨道交通车站火灾情况下客流疏散能力评价
轨道—高架桥—饱和地基周期结构振动带隙及振动传播特性研究
基于耦合振子系统等效的人工周期结构振动带隙研究
基于声子晶体的周期结构埋地管道振动带隙特性与减振方法研究
基于声子带隙特性的振动能量回收研究