High quality single photon source is very important for the quantum communication. Due to the advantages such as high emission rate, no bleaching and blinking, convenient combine with the semiconductor process, the semiconductor quantum dot is claimed to be the most promising single photon source. Due to the confinement of the sample and detector, the studies on the semiconductor quantum dot single photon and entangle photon sources in the past mainly focused on the wavelength band below 1μm. However, in order to realize the high efficient transmission of the quantum information in fiber, the telecom band single photon source is very important. In this project, first, we will study the sample growth technique of the 1.3 μm low-density InAs quantum dot and the micro-cavity preparation, study the spectral characteristics at low temperature, such as linewidth, radiative recombination time, fine structure splitting. Second, we will study the single-photon properties of the 1.3 μm quantum dot, use the HBT setup to study the purity of the single photon emission, use the HOM interferometer to study the indistinguishability, improve the emission rate of single photon by coupling with the micro-cavity. Finally, we will eliminate the fine structure splitting by applying a uniaxial strain in the growth plane of the sample, and realize the entangle photon emission of the biexciton-exciton cascade. These researches will bring benefits for the application of the telecom band quantum dot single photon and entangle photon sources in the quantum communication in the future.
高品质单光子源对于量子通信具有重要意义。半导体量子点单光子源具有发射速率高、无漂白和闪烁现象、可以和半导体工艺方便结合等优点被人们认为是最有应用前景的单光子源。由于样品生长和探测器的限制,过去的半导体量子点单光子源和纠缠光源的研究主要集中在1微米以下的发射波段。然而,要实现量子信息在光纤中的高效传输,通信波段单光子源的重要性是毋庸置疑的。首先,本项目将研究1.3微米低密度砷化铟量子点的生长及微腔的制备技术,研究其低温下谱线线宽、辐射复合时间、精细结构劈裂等光谱特性。其次,研究1.3微米量子点单光子特性,利用HBT装置研究其单光子纯度,利用HOM干涉仪研究其光子不可分辨特性,利用与微腔耦合来提高单光子的发射速率。最后,通过施加样品生长平面内单轴应力消除其精细结构劈裂,实现双激子-单激子级联发射纠缠光子。这些研究内容为今后的基于通信波段量子点单光子源、纠缠光源的量子通信提供研究基础和技术储备。
目前,量子科学与技术越来越受到国家的重视,1.3微米砷化铟单量子点量子光源对于量子通信具有重要的研究意义。本项目通过底层小量子点来释放应力生长大尺寸砷化铟量子点,使其低温下的发射波长红移到1.3微米。通过半导体工艺来制备光学微腔,研究光学微腔与通信波段单量子点的耦合,增加单光子发射效率,测量得到80 MHz激光脉冲激发下单光子收集物镜前的单光子发射计数率为8.81 MHz,单光子提取效率达到10%,单光子纯度达到96%,单光子荧光寿命为0.93 ns。然而,1.3微米发射砷化铟量子点的单光子发射谱线,受到量子点周围电荷环境的影响大,其谱线宽度为几十个微电子伏,对光子不可分性的影响很大,非共振激发GaAs层,HOM测量几乎测不到双光子干涉。采用1152nm脉冲激光激发底层小量子点,HOM干涉测量得到,零时间光子不可分辨度为66%。采用侧面激发,正面收集技术研究了严格共振激发1.3微米砷化铟单量子点,测量得到超过一个周期的Rabi振荡量子现象,单光子荧光寿命减小到0.75 ns。研究了120 K温度下微柱腔对砷化铟单量子点的耦合增强,1.3微米通信波段单光子发射速率仍可以达到3.3 MHz,单光子纯度为0.28。研究了微盘腔与单量子点的耦合,通过温度调谐实现了两者的共振耦合。对单量子点施加不同方向的单轴应力,研究单轴应力对激子精细结构劈裂的调谐,并且得到两个晶轴方向的激子寿命的寿命差可以用来表征激子精细劈裂的大小和方向。此外,我们还研究了氮化硼、氮化铝薄膜中单缺陷单光子源,发现此类点缺陷单光子源的发射波长可以覆盖可见到近红外的波段,并且可以实现室温单光子发射,通过研究其压力和温度特性,可以得到其单光子发射跟其缺陷类型及其内部的应力有关。这些研究结果为通信波段量子通信提供了研究基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
微腔中量子点单光子及纠缠光子的发射与检测
量子密码通信用长波长InN量子点单光子源研究
1.5微米波段主动频分复用宣布式单光子源
基于光子晶体和量子点的片上单光子源研究