Si nono-optical waveguide resonant cavity with low loss and high Q value is the key for high sensitivity detectors, biosensors, optical communication devices, and so on. However, the surface roughness of optical waveguide will cause high transmission loss which becomes a serious constrain to the high Q value of Si nono-optical waveguide resonant cavity. Surface Si-H bond current density smooth mechanism is proposed in this project, and the Si-H bond current density smooth technology is used to reduce the waveguide surface roughness to sub-nano scale. Atomic migration mechanism, surface/interface effect and smoothing effect of Si surface under the action of Si-H current density vector are researched theoretically. The relationship between smooth technical parameters and smoothing results, and optimal parameter control are studied experimentally by changing the experimental parameter and repeated experiments. The theoretical and experimental results identify each other, and then the improvement theoretical physical model and the optimized technological parameter model will be established. At last nano-optical waveguide ring resonant cavity with sub-nano scale roughness, ultralow loss and high Q value will be realized. The project seeks to break bottlenecks in the nono-optical waveguide preparation technology and obtain nano-optical waveguide resonator devices with low loss, high precision, high sensitive and batch production.
低损耗高Q值Si基纳米光波导谐振腔,是高灵敏探测器、生物传感器、光通讯器件等发展的关键。而波导表面粗糙度会造成较大的光传输损耗,是制约Si基纳米光波导谐振腔Q值提高的一个重要因素。本项目提出表面硅氢键流密度光滑机理,采用硅氢键流密度光滑工艺将波导表面的粗糙度降低至亚纳米量级。理论研究硅氢键流密度矢量作用下,表面硅原子的迁移机理、表面/界面效应、光滑效应。通过调整硅氢键流密度光滑工艺参数、多批次加工,实验研究关键工艺参数与光滑效果的关系及工艺参数的优化控制。理论与实验相互检验,建立完善的硅氢键流密度光滑化物理模型及优化的工艺参数模型。最终实现表面粗糙度为亚纳米量级的、超低损耗、高Q值的硅基光波导环形谐振腔的制备。该项目致力于突破低损耗纳米光波导制造技术瓶颈,实现低损耗、高精度、高灵敏、批量化纳米光波导谐振腔制造。
表面粗糙度引起的传输损耗严重限制了硅基纳米光波导结构的实际应用。本项目研究了硅基纳米光波导表面硅氢键流密度光滑化的微观机理,建立了优化的工艺参数模型。模拟分析了硅氢键对表面硅原子迁移、硅表面结构的动态变化、波导表面形貌的影响。基于对反应过程中的能量分析研究了表面光滑化的机理,揭示了在硅氢键的驱使下硅原子由高能态向低能态的微迁移机理。建立了硅氢键流密度光滑化的实验装置,优化了光滑化的工艺参数,成功的将表面粗糙度降低至0.5 nm量级,形成了一套硅基纳米光波导表面亚纳米光滑化的加工工艺。该项目的研究成果为实现低损耗的光波导器件奠定了基础。本项目共发表论文11篇,其中SCI论文8篇,EI论文1篇;申请国家发明专利6项,其中授权3项;培养研究生4名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
硅基纳米光波导陀螺敏感机制及导波结构表面光滑化关键技术研究
基于硅基混合表面等离子体波导的纳米聚焦及非线性研究
硅基光波导调制技术及其光开关阵列的研究
微纳米硅波导器件中的慢光信息处理研究