Chip electrophoresis is an ideal technique for rapid multi-component analysis, which is essential for disease diagnosis, food safety and environment security, but its application in real-world analysis is still limited. It is highly demanded to improve the applicability of chip electrophoresis and extend the scope of its application. To achieve this goal, smart polymers, polymer modified porous nano-particles and metal organic frameworks will be prepared based on the recent development of material science and used as the additives of chip electrophoresis. With the aid of the nanovesicles and other nano-structures formed by their self-assembling, it is expected to modulate the viscosity, electric charge, hydrophobicity and pore-structure of the separation medium simultaneously, maintain the uniformity of the surfaces of microchannels, and eliminate the analyte band dispersion caused by the pressure driven flow. Factors such as electrostatic force, hydrogen bond, hydrophic interactions between the analytes and the additives together with sieving and other effects from the porous structures may provide higher separation efficiency and a wider range of analytes that can be resolved. Therefore, novel chip-based free-flow electrokinetic chromatography will be developed. In addition, the removal of these additives at the ends of separation channels will also be studied to make it compatible with detection techniques such as amperometry and mass-spectrometry. Protocols for rapid analysis of analytes such as proteins, residuals of pesticides and veterinary drugs in various real samples will be established in order to accelerate the pace of chip electrophoresis toward the real application.
无论是疾病诊断还是食品或环境安全检测,都需要快速准确的多成分即时现场分析技术。芯片电泳是多组分快速分析的一种理想手段,但其实际应用仍十分有限。提高该技术的实用性,拓展其应用范围是目前亟待解决的问题。本项目拟借助材料科学的最新成果,合成和筛选智能聚合物、聚合物修饰的多孔纳米粒子和金属-有机骨架纳米晶体,作为芯片电泳的添加剂,利用其形成的纳米囊泡等自组装体,同步实现粘度、电荷状态、亲疏水性及孔隙结构的调控,保证芯片微通道表面状态的均一性,消除压力流动引起的区带展宽,提供包括静电、氢键、疏水相互作用及孔隙效应、筛分效应在内的多种待测物-添加剂相互作用模式,提高分离效率,发展新型的芯片自由流电动色谱方法,拓宽分析范围。同时,还将研究这些添加剂的柱后去除,以便安培法、质谱法等检测方式的应用。建立各类实际样品中蛋白质、农兽药残留等成分的快速分析方法,促进芯片电泳在实际分析中的应用。
芯片电泳是多组分快速分析的一种理想手段,为了提高该技术的实用性,拓展其应用范围,本项目合成了具有电荷调控能力或亲疏水性质调控能力的智能聚合物、金属-有机骨架纳米晶体以及其它纳米粒子,将其作为芯片电泳的添加剂,研究了芯片电泳中多种待测物-添加剂的相互作用模式。结果表明合适的添加剂能够有效保证芯片微通道表面状态的均一性,消除压力流动引起的区带展宽,显著提高分离柱效。为了降低芯片的成本,制作了低成本的亚毫米通道的塑料芯片用于DNA的分离,制作了具有纳米通道的塑料芯片用于DNA富集。同时,利用流动电势法研究了蛋白质等分子在毛细管表面的动态吸附过程,建立了测定蛋白质和纳米粒子相互作用的方法,研制了基于微流控芯片的非接触电导检测器和电化学安培检测器。本项目建立了一系列操作简单、重复性高的芯片电泳方法及设备,对解决该技术走向实际应用面临的问题提供了参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
面向云工作流安全的任务调度方法
物联网中区块链技术的应用与挑战
高压工况对天然气滤芯性能影响的实验研究
当归补血汤促进异体移植的肌卫星细胞存活
聚合物/粒子复合体系的自组装研究
以智能响应聚合物为表面稳定剂的无机纳米粒子自组装行为研究
聚合物媒介的无机纳米粒子可控组装
铁系纳米粒子组装体系的微结构和磁性质关系研究