Translation surface is today one of the most active research areas in mathematics, which is closely related to several other fields, including Teichmuller theory, dynamical systems, algebraic geometry. Recently, people in this filed are getting interested in the combinatorial structures related to translation surfaces, such as the saddle connection complex, the cylinder complex, and the periodic direction complex. This program will focus on the cylinder complex. More precisely, we will consider: (1) the connectivity problem, including the number and diameter of connected components, and the sufficient and necessary condition for the cylinder complex being connected, (2) the rigidity problem, i.e. the relationship between simplicial isomorphisms among cylinder complexes and affine homeomorphisms among translation surfaces. This program will improve the developments and applications of translation surfaces.
平移曲面是当前非常活跃的研究方向,吸引着 C.McMullen、M.Mirzakhani、M.Kontsevich、A.Avila、A.Okounkov、J.-C.Yoccoz 等菲尔兹奖获得者以及 A.Eskin、A.Zorich、W.Veech 等数学家的研究兴趣。它与 Teichmuller 理论、动力系统、代数几何等研究方向密切相关。近年来,平移曲面的组合结构备受关注,如马鞍线复形、圆柱复形、以及周期方向复形。本项目将主要研究圆柱复形,具体包括: (1) 平移曲面上圆柱复形的连通性问题, 包括连通分支的数目与直径,以及连通的充分必要条件;(2) 圆柱复形的刚性问题,也即圆柱复形间的同构与平移曲面间的仿射同胚这两者之间的关系。这些研究将有助于我们更加深入地认识和运用平移曲面。
平移曲面是当前非常活跃的研究方向,吸引着 C.McMullen、M.Mirzakhani、M.Kontsevi ch、A.Avila、A.Okounkov、J.-C.Yoccoz 等菲尔兹奖获得者以及 A.Eskin、A.Zorich、W.V eech 等数学家的研究兴趣。它与 Teichmuller 理论、动力系统、代数几何等研究方向密切相关。本项目研究平移曲面中的圆柱复形与马鞍线复形,证明了马鞍线复形的等距刚性与拟等距一致性,同时还研究了Thurston度量的测地线,构造并证明了调和拉伸测地线的唯一性。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
基于全模式全聚焦方法的裂纹超声成像定量检测
多空间交互协同过滤推荐
卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比
复双曲Klein群刚性问题的研究
Calderon问题和边界刚性问题
奇异积分方程的平移问题和非线性问题及其应用
WSNs连通性与拓扑容错性问题的研究