Thermal diffusion metallizing is an important and widely used surface strengthening technology. How to reduce the heat treatment temperature to avoid the negative effects remains a hot issue and difficult problem in this research field. This project proposes an electrochemical method to achieve the controllable precipitation of active atoms. Based on this, the rate controlling step of the diffusion metallizing at low temperature under different conditions will be revealed by independent control of the three key steps (active atoms precipitation, barrier effect of the oxide film and diffusion) affecting the low-temperature diffusion metallizing and comparison with the traditional activator assisted diffusion metallizing system. The electrochemical methods which can real-time reflect the growth behaviour of the metallurgical diffusion layer will be combined with the traditional structural and component characterization methods to clarify the special behaviour and mechanism of the initial deposition of the active atoms and the diffusion process under the electrochemical control of the precipitation of active atoms. Furthermore, a new method will be established to realize the low-temperature diffusion metallizing with controllable surface phase structure by controlling the active atoms precipitation to match the diffusion process. The special structure and properties of the metallurgical diffusion layer obtained at low temperature and its causes will be clarified. This research has a realistic meaning concerning the low-temperature preparation and application of the surface metallurgical diffusion layer. In the meanwhile, the scientific significance of this research lies in understanding the special behaviour of the formation of the metallurgical diffusion layer under the combination effect of controllable precipitation of active atoms and diffusion process, and its relationship with the corrosion and mechanical properties.
热扩散渗金属是一种重要并被广泛应用的表面强化技术,而如何降低热处理温度以避免其负面影响是该领域研究的热点和难点。本项目提出采用电化学方法实现活性原子的可控析出,在此基础上,通过分别单独控制影响低温扩散渗金属的三个关键步骤(活性原子析出、氧化膜阻碍和元素扩散),并与传统活化剂催渗体系对比,系统揭示不同条件下低温扩散渗金属过程的控制步骤。综合采用可实时反映冶金扩散层生长动力学的电化学技术和传统结构成分表征方法,阐明电化学控制活性原子析出下,活性原子初始沉积和元素扩散的特殊行为与机制。进而建立活性原子可控析出,以匹配扩散过程的低温渗金属方法,并实现表面相结构的可控制备。阐明低温所获冶金扩散层的特殊结构性能特征及其成因。该研究对材料表面冶金扩散层的低温制备与应用具有显著实际意义。同时,对了解活性原子可控析出与扩散共同作用下,冶金扩散层形成的特殊规律及其与腐蚀和力学性质的关系具有重要科学意义。
本项目按照预定研究计划完成,针对热扩散渗金属领域的瓶颈问题,即如何降低热处理温度,提出了一种新的大幅降低金属表面热扩散渗金属温度的普适性方法,即将自发电化学反应与固态扩散反应有效结合,实现冶金扩散层的低温制备。采用这一方法,针对铁、钴、镍体系,其渗铝温度较传统的粉末渗铝温度可大幅降低400°C以上,并且这一工艺可兼容传统固体粉末渗工艺。系统研究了基体金属在低温铝熔盐中表面渗层的生长动力学规律及形成机制,在500-600°C扩散渗铝6-12 h,铁系金属表面均可获得20-50 μm厚度的均匀致密冶金扩散层。铁基体经过熔盐扩散渗铝形成了单层的Al5Fe2组织;钴基体经过熔盐渗铝形成了外层为Al9Co2、内层为Al3Co的双层组织;镍基体经过渗铝形成了单层的Al3Ni2组织。当渗铝温度在500、550和600°C时,Fe2Al5相层的互扩散系数分别为8.54×10–9、4.75×10–8和3.58×10–7 cm2/s,激活能为209 kJ/mol;Al9Co2相层的互扩散系数分别为2.21×10–10、7.49×10–10和1.81×10–9 cm2/s,激活能为118 kJ/mol,Al3Co相层的互扩散系数分别为6.27×10–12、4.48×10–11和2.80×10–10 cm2/s,激活能为213 kJ/mol;Al3Ni2相层的互扩散系数分别为4.91×10–11、9.91×10–10和6.88×10–9 cm2/s,激活能为278 kJ/mol。渗铝后的铁、钴、镍在NaCl溶液中的腐蚀电位均有所升高,腐蚀电流密度显著降低,浸泡48 h后,渗铝样品的失重速率较未渗铝样品降低了20-50%,表明渗铝处理可显著提升基体的耐蚀性。经渗铝处理,铁、钴、镍在900°C空气氛围中保温12 h的氧化增重速率较未渗铝的样品降低了50-83%,表明渗铝处理可同样显著提升基体的抗高温抗氧化性能。相关研究对金属材料表面冶金扩散层的低温制备与应用具有显著实际意义。同时,对了解活性原子析出与扩散共同作用下,冶金扩散层形成的特殊规律及其与腐蚀性能的关系具有重要科学意义。围绕上述研究内容,已发表SCI收录论文6篇(标注有基金资助),被SCI论文他引57次。获授权发明专利1项,培养硕士生2名和博士后1名。项目执行期间,项目主持获得国家优秀青年科学基金资助和中组部万人计划青年拔尖人才。
{{i.achievement_title}}
数据更新时间:2023-05-31
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
不同改良措施对第四纪红壤酶活性的影响
镁合金低温冶金扩散渗金属的化学位梯度增强方法及机制研究
粉末冶金高熵合金难熔金属碳化物沉淀析出及强化机制研究
单原子金属催化活性中心低温完全氧化甲醛
Cu/Ag原子团簇析出机制的低温正电子湮没谱学研究