RV reducer is the core components of the robot. Tooth profile modification quality and manufacturing precision of cycloid gear is the key factor affecting the RV kinematic accuracy. Only the assembly process of the cycloidal drive is guaranteed by the traditional modification mode with the manufacturing error, and the influence on the kinematic accuracy is not covered. So the low kinematic accuracy and the poor accuracy retainability are caused, which restricted the localization of RV reducer. Thus, one meshing mathematical model with manufacturing error is constructed for cycloidal drive. With the method of the double tooth contact analysis and the analysis of meshing contact and load characterization, the influence mechanism of manufacturing errors on meshing characteristics and kinematic error is revealed. Based on manufacturing error of cycloidal gear, the tooth profile modification mechanism is researched. After then, the sensitive matrix is set up between the manufacturing error and the modification amount, and the mathematical relationship is revealed between the modification amount and the kinematic error. With the goals of the meshing characteristics and the kinematic accuracy, the proactive modification is achieved for cycloidal tooth profile. According to the expected results, the influence of manufacturing error on the kinematic accuracy of RV reducer would be clarified, and the proactive modification mechanism is revealed for cycloidal gear, and a new method will be provided to the design of the tooth profile modification and improved the kinematic accuracy of cycloidal drive. It has obviously application prospect in the quality of RV reducer of robot.
RV减速器是机器人的核心部件,摆线轮的齿廓修形质量和制造精度是影响RV运动精度的关键因素。传统修形模式只保证在制造误差下针轮与摆线轮的装配工艺性,未涉及制造误差对运动精度的影响,导致RV减速器运动精度低且精度保持性差,成为制约RV减速器国产化的瓶颈问题。本项目构建包含制造误差的摆线针轮啮合数学模型,采用轮齿双接触分析方法,通过在齿距误差和齿廓误差作用下的轮齿接触分析和承载啮合特性分析,揭示摆线轮制造误差对啮合特性及运动误差的影响机制。研究基于制造误差的摆线轮齿廓修正机理,建立制造误差与齿廓修正量之间的敏感矩阵,揭示修正量与运动误差的数学关系。以改善啮合特性和提高运动精度为目标,实现摆线轮齿廓的主动修正。预期成果将阐明制造误差对RV运动精度的影响规律,揭示摆线轮齿廓的主动修正机理,为摆线针轮行星传动的齿廓修形设计、改善运动精度提供新的方法,在机器人RV减速器品质方面具有明显的应用前景。
制造误差是导致RV减速器精度低的“罪魁祸首”,现有修形模式没有考虑制造误差影响下的不良啮合接触特性是导致摆线针轮运动精度保持性差的主要原因。本项目提出并采用空载和承载的轮齿双接触分析新技术,探究出制造误差对承载啮合接触特性与运动误差的影响机制,准确获得了拟真实工况下摆线针轮的传动误差,揭示了传统修形模式在制造误差影响下的实际啮合状况和运动精度变化。基于国产齿轮测量中心,提出了RV摆线轮制造误差的数字化检测理论和反调修正方法,实现了摆线轮齿廓加工误差的精确检测与评价,建立了齿廓误差与磨削加工参数的映射关系,通过规划齿廓误差的反调修正策略,从数学分析和工程反求的角度有效减小了摆线轮齿廓误差,通过齿廓误差的自动识别、修正与反馈处理,能够快速而精确完成摆线轮磨削加工参数修正。综合考虑制造误差的影响,提出了将RV摆线轮制造误差对传动误差和回程误差的影响融入摆线轮齿廓修正设计的新方法,由承载啮合特性的参量和传动误差的形状和幅值来决定摆线轮的设计齿廓,建立了的齿廓修正量与传动误差的数学关系,获得了更符合工程实际的摆线轮齿廓修正策略,在改善啮合接触特性和运动精度的同时,实现了摆线齿廓的主动修正,获得了更符合工程实际的摆线轮修正参数和齿廓曲线。本项目研究成果为提高我国机器人RV减速器的承载啮合特性、运动精度及精度保持性提供了理论依据和技术支撑。项目开发的摆线轮制造误差的数字化测量软件系统已在RV减速器摆线齿轮制造企业付诸应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
坚果破壳取仁与包装生产线控制系统设计
五轴联动机床几何误差一次装卡测量方法
电沉积增材制造微镍柱的工艺研究
Mills综合征二例
快刀伺服系统的控制系统设计
RV减速器摆线轮齿面的分区拓扑主动修形理论和多齿成形磨削精度控制方法
面向载荷分布优化及啮入冲击抑制的RV减速器摆线齿拓扑修形研究
误差运动对精密轴系测角精度的影响机理及误差修正技术研究
摆线齿锥齿轮五轴创成齿面失配调控机理及多阶运动修正策略