Artificial heart is developed rapidly in recent years and is expected to become a general medical treatment for final heart failure in future. With continuously performance improvement of artificial heart, infection caused by percutaneous cable has become the clinical bottleneck in long term implantation. As an ideal method of artificial heart energy supply, wireless energy transmission has urgent problems to be solved in transfer distance, reliability, and temperature control. This project launches mechanism and experimental research of biological tissue deep implanted multi-range multi-orientation distributed wireless energy transmission focusing on artificial heart clinical demands. First, This project studies mechanisms and models of multi biological tissue deep implanted multi-range multi-orientation distributed wireless energy transmission based on the approximately uniform effect of magnetic field of large scale resonant coil and magnetic field direction transform effect of multi-dimensional coil, studies energy exchange method of wearable flexible multi-dimensional coil based on digital resonance theory, and studies heat dissipation law of deep implanted energy receiving device based on blood flow heat transfer principle. On this basis, This project will establish a demonstration system of wireless energy transmission which operates with artificial heart, and launch wireless energy transfer experiment for different distributed features such as environments, range and orientation basing on biological analog media. This project will provides new ideas and solutions for current urgent problems of wireless power transmission of artificial heart. This project’s result is not only valuable for long term implanted artificial heart , but also settles the foundation for future development of active implantable medical devices.
人工心脏近年来发展迅速,有望成为末期心衰竭通用治疗手段。随着人工心脏性能不断提高,经皮电缆感染问题已成为临床长期植入的瓶颈。无线传能作为人工心脏理想的能量供给方式,在传能距离、可靠性、温升控制方面有亟待解决的难题。本项目面向人工心脏无线传能临床需求,开展多方位分布式无线传能机理与实验研究。首先,针对大尺度谐振回路线圈磁场近似均匀效应和多维度线圈磁场方向变换作用,研究多介质生物组织内深穿透磁场多方位分布式无线传能机理和模型。基于数字式谐振原理,研究穿戴式柔性多维度线圈能量交换方法。基于血流散热原理,研究深植入能量接收装置散热规律。在此基础上,建立与人工心脏协同工作的无线传能原理实验系统,并针对不同环境、不同空间方位的分布式特征,利用生物模拟介质,开展无线传能实验研究。项目针对当前人工心脏无线传能难题提供了新的思路,不但对长期植入型人工心脏有重要意义,也为植入式有源医疗器械未来发展奠定基础。
人工心脏近年来发展迅速,有望成为末期心衰竭通用治疗手段,本项目承担单位的磁悬浮人工心脏研究已经开始了人体的植入研究,很快将进入临床阶段。但随着人工心脏性能不断提高,经皮电缆感染问题已成为临床长期植入的瓶颈:磁悬浮人工心脏无任何机械摩擦,设计寿命长达10年,但通常的能量馈送经皮电缆往往寿命只有3-5年。本项目的无线电能传输作为人工心脏理想的能量供给方式,解决了传能距离、可靠性、温升控制方面的难题。本项目面向人工心脏无线传能临床需求,开展多方位分布式无线传能机理与实验研究。针对大尺度谐振回路线圈磁场近似均匀效应和多维度线圈磁场方向变换作用,研究了多介质生物组织内深穿透磁场多方位分布式无线传能机理和模型。基于数字式谐振原理,研制了穿戴式柔性多维度线圈和能量交换方法。基于血流散热原理,研究了深植入能量接收装置散热规律。在此基础上,搭建了与人工心脏协同工作的无线传能原理实验系统,并针对不同环境、不同空间方位的分布式特征,利用生物模拟介质,开展了无线传能实验研究。初步实现了模拟深植入情形下的人工心脏运行能量供给。项目针对当前人工心脏无线传能难题提供了新的思路,不但对长期植入型人工心脏有重要意义,也为植入式有源医疗器械未来发展奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于多模态信息特征融合的犯罪预测算法研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
多空间交互协同过滤推荐
多源数据驱动CNN-GRU模型的公交客流量分类预测
多酸基硫化态催化剂的加氢脱硫和电解水析氢应用
面向无线携能网络的分布式编码协作通信机制研究
无线信能同传技术中的波束成型设计
基于菲涅尔透镜的高倍太阳能聚能与传能方法理论与实验研究
面向CAV推进策略的城市管理车道多方位影响机理分析与建模