The no-reflow phenomenon results in a higher incidence of adverse clinical outcomes. Studies have suggested that microvascular dysfunction is considered to be a pathophysiologic sign of the no-reflow phenomenon. This is acknowledging that once ‘no-reflow’ occurs, particularly in its most extreme form, it is difficult to reverse and the prevention and cure strategy is difficult to treat effectively. Our previous study demonstrated that the peroxisome proliferator-activated receptor gamma (PPARG) activation may inhibit NF-κB pathways, which protects against microvascular dysfunction induced by myocardial ischemia-reperfusion (I/R) injury. In the current study, candidate miRNA targets for PPARG were screened using a bioinformatics algorithm,PPARG mRNA has a putative miR-301b binding sequence in the 3’ untranslated region (3’-UTR). In preliminary experiment,the expression levels of miR-301b was significantly up-regulated in response to hypoxia/reoxygenation in vitro and I/R in-vivo. Moreover,PPARG protein were down-regulated in neonatal rat ventricular myocytes (NRVMs) transfected with miR-301b mimic, but up-regulated by miR-301b inhibitor compared with control. Therefore, based on the bioinformatics algorithm, preliminary experiment and previous studies of ours, we propose the hypothesis that pretreatment of miR-301b silencing will increase the cardiac PPARG expression, inhibit the NF-κB pathways and protect against from microvascular dysfunction induced by myocardial ischemia-reperfusion injury. In the present study, firstly,we observe the expression levels of miR-301b, PPARG mRNA and protein in response to hypoxia/reoxygenation in vitro and I/R in-vivo. Secondly, we set out to confirm that PPARG is a direct target of miR-301b in the commonly used HEK293 cell line and in cultures of NRVMs. Thirdly, to observe the protective effect of silence miR-301b in microvascular dysfunction induced by myocardial ischemia-reperfusion injury, we will establish animal model of myocardial ischemia-reperfusion injury in adult male Sprague-Dawley rats. The rats received antagomir-301b at a dose of 80 mg/kg body weight through tail vein injection to decrease the cardiac miR-301b expression. Regional ischemia in vivo was performed at 3 days after pretreatment. By using the antagonist of PPARG (GW9662), we also like to prove that the protective effect of silence miR-301b resulted in increased cardiac PPARG expression. The result of the present study will provide new molecular target for the prevention and cure of no-reflow.
无再流现象的病理生理基础是微循环障碍,目前各种防治措施作用有限。我们前期研究发现,过氧化物酶体增殖物激活受体gamma(PPARG)激活可抑制NF-κB表达,改善心肌缺血/再灌注(I/R)微循环障碍。我们预实验发现I/R损伤后miR-301b表达升高,而且miR-301b与PPARG可能存在靶向关系。因此我们推测:沉默miR-301b预处理可通过靶向上调PPARG表达,改善微循环障碍,缓解无再流。并拟进行以下研究:首先,检测miR-301b、PPARG在I/R损伤时的表达。其次,确证miR-301b与PPARG基因的靶向关系。最后,通过静脉注射antagomir-301b预处理致心肌miR-301b表达沉默,3日后构建大鼠心肌I/R模型,观察沉默miR-301b预处理通过靶向上调PPARG对微循环障碍的改善效应,并探讨作用机制。本课题将为研究防治无再流的分子靶点和靶向策略提供新资料。
急性ST段抬高型心肌梗死再灌注治疗后的“无再流现象”导致了严重的不良临床预后,其病理生理基础是微循环障碍。越来越多证据表明,microRNA在缺血再灌注损伤过程中起重要作用。因此,microRNA调控可能为心肌缺血再灌注微循环障碍提供新的治疗靶点。我们前期研究证实,过氧化物酶体增殖物激活受体gamma(PPARG)激活可抑制NF-κB表达,改善心肌缺血/再灌注(I/R)微循环障碍。我们通过成功建立乳鼠心肌细胞缺氧复氧模型及大鼠心肌缺血/再灌注模型,发现在与PPARG基因靶向匹配的候选microRNA中,miR-301b-3p表达水平升高最明显。在细胞水平,通过双荧光素酶报告基因实验以及RT-qPCR检测,证实PPARG是miR-301b-3p靶基因。最后,通过建立大鼠心肌I/R模型,证实低表达miR-301b-3p预处理通过靶向激活PPARG信号通路,抑制NF-κB的激活,降低炎症因子TNF-α、IL-1β、IL-6在心肌组织的表达,缓解炎症反应;进而减少血细胞在微血管的聚集,缓解毛细血管内皮细胞肿胀,改善微血管的灌注,缩小心肌I/R无再流及心肌梗死面积,改善心功能及血流动力学指标。综上,低表达miR-301b-3p通过靶向激活PPARG信号通路,缓解心肌I/R炎症反应,最终改善微循环障碍。因此,miR-301b-3p可能是无再流防治中一个新的基因治疗靶点。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
伴有轻度认知障碍的帕金森病~(18)F-FDG PET的统计参数图分析
针灸治疗胃食管反流病的研究进展
坚果破壳取仁与包装生产线控制系统设计
fgl2在急性心肌缺血再灌注冠脉微循环障碍中的作用及机制研究
环状RNAmmu_circ_0000021介导miR-143-3p靶向调控NPY在心肌缺血再灌注微循环障碍的作用及机制研究
PERK/CaN信号通路在糖尿病非阻塞性冠脉疾病微循环障碍中的作用机制及基因靶向沉默效果研究
冠脉内预防性应用山莨菪碱对急性心肌梗死再灌注后心肌微循环障碍/缺血再灌注损伤防治效应及机制的系列研究