Soft materials is capable of responding to various stimuli to undergo large deformation, such as responding to mechanical force, temperature change, electric field force, magnetic field force, chemical force and so on. The mechanical deformation and stability of soft materials under these stimuli have been extensively studied. Available experiments have demonstrated that ultrasonic waves can deform solid materials, but it still lacks a fundamental understanding for the physical mechanism of acoustic actuated large deformation. Apart from the research of the applicant, there have no available publications of other researchers on the multi-field mechanics of acoustic actuated large deformation of soft materials. This project will investigate the phenomenon of acoustic actuated large deformation from the viewpoint of non-linear continuum mechanics. By means of theoretical modelling, numerical stimulation and experimental measurements, we will study the ultrasonic wave propagation in soft materials with deformed configuration and the behavior of material large deformation. The strong coupling relation among ultrasonic field, acoustic radiation stress field and material deformation field will be revealed, upon which the acoustomechanical constitutive theory will be established. The incremental iterative numerical calculations and experimental tests will be performed to investigate the acoustomechanical large deformation of soft materials, and the fundamental mechanism of acoustomechanical coupling will be theoretically elaborated. This project is a completely new research for the phenomenon of acoustic actuated materials deformation, and will contribute to the understanding of acoustic actuated large deformation of soft material, and also be helpful for the development of multi-field coupling mechanics of soft materials. This project will provide theoretical and technical supports for the design of ultrasonic wave actuated soft devices.
学术界现有软物质力学主要研究软物质材料在力、热、电、磁、化等多种外场激励下的变形行为及稳定性等。已有实验发现了声致变形现象,但还缺乏深入理论认识与理解,而考虑声致软物质变形的多场耦合力学研究,除了申请人的初步探索性工作,尚未见其他人报道。本项目拟从非线性连续介质力学角度对声致软物质变形现象开展研究,结合理论分析、数值模拟与实验验证,研究超声波在变形构型软物质中的传播规律与声驱动的材料大变形行为,揭示超声波声场、声辐射应力场、材料变形场之间的循环耦合机制,建立软物质弹性体声-力耦合本构理论模型。并开展小增量迭代数值模拟计算和声致变形实验测量研究,结合理论分析,表征软物质弹性体声-力耦合变形行为,阐明声-力耦合下的声致变形机理。本项目是软物质声致变形的全新开拓性研究,是满足学术界深入理解声致变形的需要,也是适应软物质多场耦合力学发展的需求,项目研究将为声致软物质变形器件设计提供理论和技术支持。
面向超声波在生物医学检测方面的应用需求,本项目围绕超声波在软材料中传播的声力耦合效应,开展了深入的理论建模、数值模拟、机理分析工作。项目取得以下进展:1)建立了温度敏感性水凝胶声-力-热多场耦合本构模型,表征了水凝胶声致变形行为,阐明了多孔渗流水凝胶声致变形机理;2)建立了软物质弹性体声-力耦合的变形行为理论模型,预测了软物质声致变形的稳定性和分岔行为,并阐明了变形稳定性和分岔行为的调控机制;3)建立了软物质梁声-力耦合的弯曲变形行为理论模型,表征了声触发的非线性弯曲行为,发现并阐明了软物质梁声-力耦合弯曲变形的多稳态现象;4)建立了溶胀红细胞在声辐射力作用下的声-力耦合变形理论框架,发展了声-力耦合的有限元数值模拟方法,表征了红细胞在超声驻波声场中的变形行为;5)发展了三维溶胀球形红细胞在声辐射力作用下的声-力耦合变形理论,开发了声-力耦合有限元数值模拟技术,阐明了声波作用下细胞的力学变形机理;6)建立了高斯型超声波对真核细胞的声辐射力理论模型,发展了声辐射力数值建模方法,揭示了真核细胞材料及尺度参数对声辐射力分布的影响规律;7)建立了考虑应力纤维重组效应的细胞力学微环境理论模型,定量揭示了应力纤维重组效应及基质刚度对自收缩细胞内外力学环境的影响规律。项目执行期间发表SCI期刊文章34篇,国内核心期刊4篇,国际会议论文5篇,国内会议论文10篇,国内外邀请报告6次,授权发明专利6项,申请发明专利43项,参与组织国内学术会议3次。其中文章主要发表Proc Roy Soc A、Microfluid Nanofluid、Biomech Model Mechanobiology、Phys Fluid、J Sound Vib、Appl Phy Lett、Compos Struct、J Acoust Soc Am、J Appl Phy等专业有影响力期刊上。负责人担任中国力学学会固体力学专业委员会波动力学专业组成员,获得中国科协第四届优秀科技论文奖1篇次,获得江苏省力学学会科学技术奖特等奖1项。项目执行期间,项目负责人晋升学校特聘教授,锻炼和培养青年教师1人,国际合作培养博士生1人,国内博士研究生3人和硕士生6人。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
中国参与全球价值链的环境效应分析
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
钢筋混凝土带翼缘剪力墙破坏机理研究
磁敏弹性体多轴大变形磁-力耦合的实验研究与本构表征
有限变形下热致形状记忆聚合物热-力耦合循环变形行为及其本构描述
软物质本构理论的多尺度模型
NiTiHf高温形状记忆合金热-力耦合循环变形行为的宏微观实验及本构模型研究