ATP synthase is a multisubunit protein complex for ATP synthesis (the bacterial ATP synthase is composed of α3β3γ1ε1δ1a1b2c10-12) and is ubiquitously present in the plasma membrane, mitochondrial inner membrane and/or chloroplast thylakoid membrane of all living organisms. Research work on the catalytic mechanism has been awarded the Nobel Prize, but there are still two key questions to be answered. First, whether the well-known rotation catalytic mode, i.e., the rotation of γ/ε shaft driven by the rotation of the membrane-integrated c ring leads to the conformational change of the α/β subunits to synthesize ATP, occurs in living cells? Second, how does the ε subunit regulate the enzymatic activity of the ATP synthase? In these regards, we attempt to label the c ring and α/β subunits of the ATP synthase in living cells by using chromosomal editing and then examine whether they rotate in cells; in addition, we have explored the chromosomal editing-based unnatural amino acid-mediated photo-crosslinking for investigating the interaction of the ε subunit with α, β, γ or c subunits under a variety of physiologic conditions, which would illustrate the role of its conformational change in regulating ATP synthase. These self-developed technologies, unlike the widely used in vitro methods, allow the target protein to be expressed and labeled in a nearly natural transcriptional and translational environment, and thus hopefully enable us to uncover the new rotation catalytic mode and the new enzymatic regulation mechanism for the ATP synthase taking place in cells.
ATP合酶是合成ATP的多亚基蛋白质复合物(细菌ATP合酶的亚基组成为α3β3γ1ε1δ1a1b2c10-12),位于细胞质膜、线粒体内膜或叶绿体内囊体膜中。关于其催化机制的工作已获得诺贝尔奖,但有两个关键问题仍有待回答。第一,目前所公认的膜内c环转动驱动γ/ε轴转动、进而使α/β亚基发生构象变化的旋转催化工作模式,是否真在活细胞中发生?第二,活细胞中ε亚基怎样调控ATP合酶的酶活?针对这些问题,我们拟采用基于染色体编辑的基因操作技术,对c环以及α/β亚基进行标记,检验其在活细胞中是否转动;也利用基于染色体编辑的非天然氨基酸光交联技术,探测ε亚基在不同细胞状态下和α、β、γ、c亚基的相互作用,从而揭示其构象变化和体内ATP水平的关系。这些自主开发的技术,有别于体外研究方法,能够让目标蛋白在完全天然的转录翻译环境得到表达并被标记,有望揭示ATP合酶旋转催化的新工作模式以及酶活调控新机理。
ATP合酶是合成ATP的多亚基蛋白质复合物(细菌ATP合酶的亚基组成为α3β3γ1ε1δ1a1b2c10-12),位于细胞质膜、线粒体内膜或叶绿体内囊体膜中。关于其催化机制的工作已获得诺贝尔奖,但其催化机制和酶活调控机制仍然有待回答。本项目以大肠杆菌ATP合酶为模型,研究其旋转催化机制以及ε亚基构象变化调控ATP酶活性的机制。首先,综合已有的ATP合酶三维结构和膜脂动力学模拟计算数据,我们提出了新的旋转催化假说,即膜内的c环在质子动力势的推动下,发生周期性的构象变化,进而通过γ/ε轴,推动可溶α/β六聚体的旋转,完成ATP的合成(该部分工作已经发表)。同时,我们发展了高通量SDS-PAGE技术(可以提同时分析384个蛋白质样品),借此大规模地平行分析ATP合酶的ε亚基在不同生理状态下和α、β、γ、c亚基相互作用的精确变化,直接探测到了ε亚基的两种构象状态:插入状态和非插入状态;进一步,我们证明了插入状态对于ATP合酶在不利的生理条件下合成ATP的酶活起关键作用,为大肠杆菌赢得了部分生长优势(该部分工作正在投稿)。这些研究为理解ATP合酶的旋转催化机理提供了新的框架,也直接证明了ATP合酶在活细胞中通过动态构象来调解其ATP合成或者分解的酶活,达到了课题的预期目标。受该基金标注支助的SCI论文总计8篇(均为第一作者或通讯作者),包括SCI论文1篇(Liu et al,Science China Life Sciences,2016),还有1篇论文在投稿中。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于多模态信息特征融合的犯罪预测算法研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
拟南芥叶绿体ATP合酶beta亚基的MAPK磷酸化及磷酸化对ATP合酶功能调节的机理研究
旋转磁场对ATP合成酶的影响
酵母核基因产物对线粒体ATP合酶组装的调控机制研究
ATP合酶的仿生微胶囊组装及ATP的光驱动合成