Cutterhead is a key component of the full-face hard rock tunnel boring machine (TBM), which will encounter high hardness, high-temperature, high quartz content of the "three high" rock environment in the tunneling process. The "three high" rock environment will be crushed by the multi-point shock load induced by different types of disc cutter group (center cutters, face cutters, gage cutters) which lead to the extremely strong vibration of the cutterhead. The main reason is the sudden change of the state and flow of the force passed in the cutterhead transition areas which lead to large area of cracking damage appearing on the cutterhead before reaching the predetermined life. Considering the sequential + rotary + rolling + baroclinic characteristics of the gage cutter group, a three dimensional multi-cutters hybrid cutting rock crushing theoretical model based on the dense nuclear theory is proposed. Based on the analysis of the characteristics of the cutterhead transition area crack damage in actual projects, stiffness attenuation and damping changes induced by the cutterhead crack damage is formulated quantitatively, and a multi-point multi incentive space cutterhead damage dynamics model is presented considering the strong impact. Then the TBM cutterhead site excavation vibration damage test is to be carried out. Considering the strength degradation caused by the cutterhead crack damage, a cutterhead vibration damaged fatigue life prediction model is established, and the cutterhead accelerated fatigue testing is carried out to reveal the damage mechanism of the high-cycle fatigue and the rub-impact and its evolution. Finally a life-oriented cutterhead anti-damage design method is proposed taking into consideration of the complicated rock surrounding environment.
刀盘是硬岩掘进装备(TBM)核心部件,掘进过程中会遇到高硬度、高温、高石英含量的“三高”围岩环境,加以不同类型滚刀群多点冲击破岩的特性使得刀盘振动极其剧烈,尤其是在受力性态及力流传递方式发生突然改变的刀盘边缘过渡区域,导致刀盘在未达到预定使用寿命之前出现大面积损伤开裂的严重工程问题。本课题针对滚刀群顺次+回转+滚压+斜压的特点,建立基于密实核理论的多滚刀空间复合切削岩石破碎理论模型。同时分析实际工程刀盘过渡区域损伤裂纹的特征,将强振动作用下刀盘损伤引起的刚度衰减和阻尼变化进行定量表征,建立空间多点多向强冲击激励下刀盘系统损伤动力学模型,开展TBM刀盘现场掘进振动损伤试验。进而考虑刀盘边缘结构损伤引起的强度退化,建立刀盘振动损伤疲劳寿命预测模型,并开展刀盘缩尺模型加速疲劳试验,揭示刀盘边缘过渡区域结构的高周疲劳、碰摩损伤机理及其演变规律,形成复杂围岩环境下TBM刀盘抗损定寿设计方法。
国家基础工程和国防建设对硬岩掘进装备(TBM)具有重大需求,针对TBM刀盘盘体严重损伤开裂的工程问题,分析复杂环境下过渡区域边滚刀群复合切削岩石破碎机理,TBM刀盘损伤动力学行为,揭示其振动损伤机理,是目前TBM刀盘设计的难点。本课题围绕上述科学难题进行了以下研究:.(1)首次建立了多因素影响下滚刀群多阶段受力预测模型,其与实验对比误差在10%以内。成果已发表在INT J ADV MANUF TECH (JCR2区,IF:2.209) 等top期刊共9篇,其中SCI 2篇,EI 6篇,授权专利5项。.(2)创新性地建立了多结合面及多自由度耦合的滚刀-刀座系统动力学模型,进而提出了针对重大装备的抗振均载设计方法。成果已发表在Nonlinear Dynamics (JCR1区,IF:3.464) 等top期刊共15篇,其中SCI 5篇,EI 9篇,授权专利7项,申请3项,并在第一届由杨华勇等三位院士发起的TBM技术研讨大会做特邀报告。.(3)首次提出针对大型复杂结构件的裂纹扩展寿命预测方法,将刀盘寿命预测误差从70%以上降低到30%以下。同时提出刀盘轻量化改进方案,在满足性能指标要求下,刀盘重量减轻8.08%。成果已发表在COMPUT IND ENG(JCR1区,IF:2.623)等top期刊共7篇,其中SCI 4篇,EI 2篇,授权专利3项,申请1项,并在第三届TBMDigs国际权威学术会议大会做特邀报告。.成果应用方面,与多家企业联合进行辽西北工程、新疆EH工程等数十个工程TBM主机抗振抗损设计。直径涵盖Ф4~ Ф14.9,有效解决了TBM主机振动大、寿命短的难题,实现了装备20km的长寿稳定掘进,突破了整机抗振抗损设计的关键技术。.综上,本项目累计获辽宁省科技进步二等奖1项和中国交通建设集团科技进步一等奖1项,获辽宁省自然科学优秀学术论文一等奖1项。出版学术专著3部,其中《全断面隧道掘进机刀盘系统现代设计理论及方法》为国内首部TBM刀盘抗振设计学术专著。发表论文31篇,其中SCI检索11篇(JCR1区3篇,JCR2区4篇);EI检索17篇;申请发明专利19项,授权15项,1项已转让企业。参加和参办国内外学术会议10余次,大会特邀报告2次,大会组织委员3次,大会副主席1次。.项目实施期间,培养博士2人,硕士10人,1人获校硕士生学术之星、4人获研究生国家奖学金。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
坚果破壳取仁与包装生产线控制系统设计
滚动直线导轨副静刚度试验装置设计
基于全模式全聚焦方法的裂纹超声成像定量检测
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
随机突变载荷下的TBM刀具布置与刀盘盘体结构耦合设计方法
三高环境下TBM刀盘破岩机理与设计方法研究
冲击载荷下TBM梯度硬度滚刀地质匹配性设计制造方法研究
TBM刀盘系统破岩能量特性分析及集成化设计理论研究