Towards the problems of low adsorption ability of the material and poor heat and mass transfer in the solar adsorption cooling system, the project will develop new type zeolite of FAM-ZO2 as adsorption material and dual/multiple conjugate-working bed to realize continuous cooling purpose in daylight of summer. With the substitute chemical reaction, the sort of zeolite molecular sieves with hydrophobic and neutrally charged characteristics will be made from phosphate and aluminate. The adsorption variation of the new material is possibly 3~4 folds of the Y-type zeolite or silicon gel. In addition, it is also focused on the study of the optimization of the passage structure in the adsorption bed for cooling / heating purpose. To reduce efficiently the contact thermal resistance along the bounder of the heating/cooling tube and the adsorbents, the consolidating method to unite the tube wall and the AlPO-based zeolite will be investigated. The desorption way with usage of the sunlight directly onto the bed will be paid attention. Further more, emphasis is also laid on the analyses and realization of the rotary adsorption bed, which is composed of two or more sectional beds, acts as solar energy collector as well as adsorbents, and adsorbing/desorbing alternatively. In addition,the optimization of the evaporator will also be taken into account. By the technical route of combination of theoretical analyzing, numerical simulation and experimental test, the goal of improving the COP of solar adsorption cooling system will be fulfilled finally.
针对目前太阳能吸附制冷系统中吸附材料对循环工质的吸附能力不足,和固定式吸附床热、质传递速率较低的情况,研制高吸附量的FAM-ZO2型沸石吸附材料,和旋转式双效/多效组合式吸附床,实现夏季白天连续吸附空调的目的。采用替代化学反应方法,以磷酸盐和铝酸盐为原料,制取疏水性的、中性不带电荷的、AlPO质的沸石分子筛,使其吸附变化量达到Y型沸石或硅胶的3~4倍;研究吸附床内加热/冷却流体通道的优化形式,和加热管基材与AlPO基型沸石的一体化制作技术,有效减小接触界面上的传热热阻;研究利用太阳光直接照射的脱附方法;利用太阳辐射能与背阴环境存在热能品位差异的客观条件,研制两个或多个吸附构件协同工作的、集太阳能集热/吸附为一体的、能够交替吸附/脱附的旋转式吸附床;优化室内蒸发器的结构形式。通过理论分析、数值模拟和实验测试手段相结合的技术路线,达到太阳能吸附空调系统COP明显改善的目的。
随着当今世界经济的发展和能源的消耗,环境和能源问题已经成为一个热点。传统的制冷方式不仅会消耗电能,还对环境造成相当严重的危害。太阳能吸附式制冷方式的提出,既减少了电能的消耗又不会对环境造成影响。太阳能吸附式制冷是一种环境友好型制冷系统,它以天然的太阳热能作为系统的驱动力,并且使用无氟利昂的制冷剂,因此,近年来太阳能吸附式制冷系统成为国内外学者的研究热点。. 在太阳能吸附式制冷系统中,吸附床是核心部件,而吸附床中吸附工质对的性能又决定着吸附床的效率。本项目主要针对吸附材料的宏观特性进行实验研究,所采用的方法是,将两种吸附材料SAPO-34和ZSM-5沸石分别放置在恒温恒湿系统和可控温真空脱附系统中分别进行吸附和脱附特性的实验,考察其宏观传质特性。究结果表明,在同一温度下,沸石分子筛SAPO-34和ZSM-5的吸附率均随空气相对湿度φ的增加而增大,吸附实验中沸石的吸附速度是时间的减函数,但是SAPO-34的初始吸附速度高于ZSM-5。另一方面,在同一压力下沸石分子筛SAPO-34和ZSM-5的脱附完善度均随温度的增加而增大,SAPO-34的脱附等压线呈S型,而ZSM-5的脱附等压线近似于指数曲线。SAPO-34的初始脱附速度高于ZSM-5,所以SAPO-34-水工质对可以缩短系统循环时间。. 在第二阶段,对太阳能吸附制冷系统进行基础性吸附脱附性能实验,分析了实际系统循环热力过程。进而针对吸附床集热效率低,脱附困难而导致循环周期长的问题,设计制作了适用于日照充足地区的抛物槽式太阳能集热器的太阳自动跟踪系统。系统以基于南北方向倾斜放置的金属-玻璃真空集热管式吸附床为核心部件,通过抛物槽的自动转动,将太阳光照实时地汇集到集热管上。吸附床由真空集热管和冷却铜管构成,吸附剂填充在真空管内管和冷却铜管组成的空腔内。吸附床内布置有传质通道和9个温度测点,传质通道使制冷剂气体更好地进入吸附床,温度测点用于测量吸附床内吸附剂的温度变化。冷却过程分别采用自然风冷和循环水冷两种方式,吸附过程也同样采用这两种冷却方式。结果表明, 无论采用何种冷却方式,SAPO-34的吸附制冷能力都明显大于ZSM-5沸石分子筛, 能够产生更好的制冷效果。
{{i.achievement_title}}
数据更新时间:2023-05-31
煤/生物质流态化富氧燃烧的CO_2富集特性
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
耗散粒子动力学中固壁模型对纳米颗粒 吸附模拟的影响
太阳能光伏光热建筑一体化(BIPV/T)研究新进展
碳化硅多孔陶瓷表面活化改性及其吸附Pb( Ⅱ )的研究
低成本高性能沸石分子筛膜的构建与分离系统优化
制纯氧沸石分子筛吸附机理的分子模拟研究
沸石分子筛/泡沫铝复合吸附剂强化传热传质机理研究
斜发沸石制备高性能介孔砷吸附剂的应用基础研究