High-precision guidance and control of deep space exploration vehicles in the process of atmospheric entry is the premise and guarantee for successful implementation of planetary exploration and landing mission. However, the existence of multi-source disturbances and multiple constraints during the atmospheric entry process seriously deteriorates the guidance and control accuracy of the exploration vehicles. The research of high precision integrated guidance and control of deep space exploration vehicles in a complex environment has great theoretical and engineering significance. The existing integrated guidance and control methods have some shortcomings, such as rough disturbances estimation, ignorance of the disturbances in the trajectory planning design, and open-loop control in a single guidance cycle. This project intends to establish a fine classification and estimation framework of multi-source disturbances through an in-depth analysis of the influence mechanism of multi-source disturbances. Then, combing the disturbances estimation with the original predictive-corrective trajectory planning algorithm constructs a composite predictive-corrective trajectory planning method. Finally, the disturbances estimation is incorporated into the control design process of each guidance cycle to construct a composite dynamic trajectory tracking controller. Thus a high precision guidance and control framework is established, which integrates multi-source disturbances information classification and estimation, composite predictive-corrective trajectory planning and composite active anti-disturbance trajectory tracking control. The research of this project will provide effective theory and methods for high precision guidance and control of deep space exploration vehicles during the atmospheric entry process under a complex environment.
深空探测器大气进入过程高精度制导与控制是行星探测着陆任务成功实施的前提和保障,然而大气进入过程多源干扰和多重约束的存在,严重影响了探测器系统的制导和控制精度。复杂环境下深空探测器系统一体化高精度制导与控制研究具有重要的理论价值和工程意义。现有一体化制导控制方法存在干扰估计粗糙、轨迹规划过程忽略干扰影响以及单个制导周期内开环控制等缺点。本项目拟通过深入分析多源干扰影响机理,建立精细化干扰分类估计框架;而后基于干扰估计信息,结合原有预测-校正轨迹规划算法,构造包含干扰估计信息的复合预测-校正轨迹规划方法;最后将干扰估计信息纳入每个制导周期的控制设计过程,构造复合动态轨迹跟踪控制器。从而形成集多源干扰信息分类估计、复合预测-校正轨迹规划以及复合主动抗干扰轨迹跟踪控制三位一体的高精度制导控制框架。该项目研究将为复杂环境下深空探测器大气进入过程高精度制导和控制提供切实有效的理论和方法。
本研究立足于国家深空探测战略,针对火星探测器大气进入过程面临的多源干扰挑战,深入开展高精度制导与控制研究:1)针对探测器大气进入过程的高度跟踪问题,基于扩张状态观测器技术和快速非奇异终端滑模算法,构建了复合快速非奇异终端滑模控制器,实现了多源干扰影响的快速抑制,并且通过幂函数的引入,保证了控制量的连续。2)针对探测器大气进入过程控制量单一而控制目标多样的挑战,引入了基于标称能量下阻力跟踪制导方案,设计了一种复合连续非奇异终端滑模控制器,在保证控制量连续的同时,实现了阻力的高精度跟踪。3)针对基于标称能量下阻力跟踪制导方案控制量时间维度不连续以及难以工程实现的挑战,引入基于时间维度下的深空探测器大气进入过程阻力跟踪制导方案,设计了连续快速非奇异终端滑模阻力跟踪控制器,在保证控制量连续的同时,实现了阻力跟踪误差的有限时间收敛。. 考虑到深空探测器对象控制量单一且受限的特性,本研究亦针对复杂环境下的四旋翼无人机高精度跟踪控制开展研究,并对该控制对象的多源干扰、多重故障影响以及测量噪声影响的抑制问题进行研究,提出了全回路解耦控制方案、全回路连续有限时间轨迹跟踪控制方案以及姿态回路滤波抗扰控制方案。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
深空探测器在轨自主运行规划与姿态制导技术
基于微分变换的火星进入轨迹规划与精确制导
基于数据驱动的深空探测器姿态容错控制研究
基于复杂耦合时间线的深空探测器自主任务规划方法研究