The thin films containing metal oxides semiconductors have excellent properties of visible light transmission and conductivity, which provides promising applications in these fields of materials and energy etc. The traditional vapor deposition method is being replaced by simple rapid deposition method, like printing, due to the high energy cost of traditional deposition method in the preparation of thin films. However, how to prepare the nanoparticles with good dispersibility is a key challenge. In this proposal, we will use the quantum chemistry calculations to design the new metal oxide materials and further adopt novel high-gravity reaction coupled with phase transfer technology to synthesize the designed metal oxides nanoparticles, aiming at achieving the transparent mono-dispersion of metal oxides. By coating the mixture containing metal oxide and organic resin on transparent plastic and glass, we fabricate the isolating infrared thin film, which can act as smart optical window materials for building energy saving. The formation mechanisms of transparent mono-dispersion will be studied in high-gravity environment, which will guide the preparation of the metal oxides nanoparticles dispersed easily in organic coating by high-gravity technology. The effect of composition and structure of nanoparticles, dispersion state of nanoparticles in coating matrix and interfacial reaction mechanism between nanoparticles and matrix on the optical and electrical properties of the nanocomposite will be explored. This proposal would provide theoretical and technical fundaments for the applications of the metal oxide contained thin film as optical window in energy-saving glass.
金属氧化物半导体薄膜材料具有优良的可见光光传输性及导电性,在材料和能源化工等领域具有重大的应用前景。传统制备薄膜材料的气相沉积法由于能耗高逐渐被打印等简单高速沉积法所替代,但是易分散纳米颗粒的可控制备技术一直是困扰高速沉积法广泛应用的瓶颈和核心科学难题。本项目拟采用基于量子化学计算的材料基因组学设计筛选新型掺杂金属氧化物材料,并指导实验通过超重力技术结合萃取法制备透明纳米金属氧化物单分散液,与有机涂料共混涂覆创制具有红外线隔绝能力的高透明光学窗口薄膜材料。研究超重力强化环境下纳米颗粒单分散液的形成机制,探索掺杂金属氧化物的组成和结构、在涂层基体中分散性、与基体界面作用机制对薄膜材料光学和电学等性能的影响,结合计算与实验结果建立周期性元素组成氧化物材料的构效机制,并指导具有目标导向可控分散性的纳米金属氧化物的超重力法可控制备,为光学窗口薄膜材料在玻璃节能领域中的应用提供重要的理论基础。
金属氧化物半导体薄膜材料具有优良的可见光光传输性及导电性,可以透过、吸收或反射特定波长的光波,在材料和能源化工等领域具有重大的应用前景。传统制备薄膜材料的气相沉积法由于能耗高逐渐被打印等简单高速沉积法所替代,但是易分散纳米颗粒的可控制备技术一直是困扰高速沉积法广泛应用的瓶颈和核心科学难题。项目采用基于量子化学计算的材料基因组学设计筛选新型掺杂金属氧化物材料,并指导实验通过超重力法结合改性技术制备了透明纳米氧化锌和掺杂氧化钨等具有紫外线和红外线屏蔽能力的金属氧化物单分散液,以及具有减反射功能的空心二氧化硅单分散液,并通过自组装涂覆法创制出具有紫外线和红外线隔绝能力的高透明光学窗口薄膜材料。研究了光功能纳米氧化物的组成和结构、自组装方式等对薄膜材料光学性能的影响,结合计算与实验结果建立周期性元素组成氧化物材料的构效机制,并指导具有目标导向可控分散性的纳米氧化物的超重力法可控制备,为光学窗口薄膜材料在玻璃节能领域中的应用提供重要的理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
形貌可控的单分散有机纳米材料的制备及性能研究
超薄金属薄膜及其微纳结构的可控制备与光学特性
光学窗口与薄膜材料的红外热光系数研究
液相分散法制备金属纳米微粒及其摩擦学性能