Zirconium-based bulk metallic glasses (BMGs) exhibit low Young’s modulus and high wear resistance, which is beneficial in minimizing the commonly occurred problems of “stress shielding effect” and “wear debris diseases” for the traditional biomedical implant materials. These advantages of Zr-based BMGs make them to be potential novel biomedical implant materials. Metallic implant materials will suffer from corrosion wear synergistic interaction in the physiological environment, which accelerates failure of implant materials and degrades their implant life. Therefore, the study on the behavior and mechanism of corrosion wear synergistic interaction in physiological environment for amorphous alloy implant materials is of great significance in both theory and application. In this project, a corrosive wear testing system is introduced to investigate the influence of operating conditions on the corrosive wear behaviors of Zr-based BMGs in simulated physiological environment. The correlation between the corrosion wear synergistic interaction and operating conditions are quantitatively studied. The effects of synergistic interaction on the wear failure mechanism are investigated. The influences of mechanical factors on the electrochemical properties and electrochemical factors on wear behaviors of alloys during corrosive wear are studied. The changes in composition, structure, and mechanical properties of the alloys surface during corrosive wear are investigated to elucidate the synergistic interaction mechanism of corrosion and wear. The results of this project will provide theoretical and experimental bases for controlling corrosive wear process of Zr-based BMGs in physiological environment and prompt their application in the field of biomedical implant materials.
Zr基块体非晶合金具有低杨氏模量和高耐磨性,可以有效缓解传统医用金属植入材料的“应力遮挡效应”和“磨屑疾病”的问题,很有希望成为新型的生物医用植入材料。金属植入材料在生理环境中会发生腐蚀磨损交互作用,加速材料失效,严重影响其置换寿命。因此研究非晶合金植入材料在生理环境中的腐蚀磨损交互作用行为及机理在基础理论和应用两方面都具有重要意义。本项目拟采用腐蚀摩擦磨损试验机定量化地研究Zr基块体非晶合金在模拟生理环境中的腐蚀磨损交互作用量随工作条件的变化,建立腐蚀磨损交互作用量与磨损失效机制的关联;在此基础上,研究工作条件中力学因素对腐蚀行为的影响以及电化学因素对磨损行为的影响,结合非晶合金的表面成分、结构和力学性能变化,揭示其腐蚀磨损交互作用机理。本项目工作将为非晶合金在生理环境中的腐蚀磨损控制提供理论和实验基础,促进非晶合金作为生物医用植入材料的应用。
Zr基块体非晶合金具有低杨氏模量和高耐磨性,可以有效缓解传统医用金属植入材料的“应力遮挡效应”和“磨屑疾病”的问题,有望成为新型的生物医用植入材料。金属植入材料在生理环境中会发生腐蚀磨损交互作用,加速材料失效,严重影响其置换寿命。因此研究非晶合金植入材料在生理环境中的腐蚀磨损交互作用行为及机理在基础理论和应用两方面都具有重要意义。本项目采用腐蚀摩擦磨损试验机研究了Zr基块体非晶合金在模拟人体溶液的腐蚀磨损交互作用及磨损机制;Zr基块体非晶合金的电化学行为;Zr基块体非晶合金在模拟人体溶液的腐蚀磨损交互作用机理。研究发现了Zr基非晶合金在PBS溶液中摩擦存在着明显的腐蚀磨损交互作用,Zr基非晶合金的摩擦磨损交互作用受到摩擦载荷、摩擦速率、摩擦介质和对偶件的影响,其腐蚀磨损交互作用量与非晶合金在溶液中的耐腐蚀性能有关。通过合金化Pd、Au和Pt改变Zr基非晶合金的耐蚀性,可以影响到非晶合金在PBS溶液中的腐蚀磨损交互作用。其中Pt合金化明显提高了Zr基非晶合金的开路电位和点蚀电位,对非晶合金的耐腐蚀磨损性能提高最显著。将这一研究结果应用到Zr基晶态Zr-Al-Fe-Nb合金中,通过提高Zr含量,提高Zr基晶态合金的开路电位,降低腐蚀电流密度,可以有效提高在PBS溶液中的耐腐蚀磨损性能。对于Mg基非晶合金,在PBS溶液中摩擦同样存在着腐蚀磨损交互作用,摩擦作用导致Mg基非晶合金的开路电位下降,腐蚀电流密度升高,耐腐蚀性能下降,从而导致腐蚀磨损交互作用量增加。其中腐蚀电流密度对腐蚀磨损交互作用的影响更为显著。本项目工作为控制块体非晶合金在生理环境中的腐蚀磨损提供实验和理论基础,有力促进块体非晶合金在生物医用植入材料领域中的应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
低轨卫星通信信道分配策略
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
非晶合金/石墨烯纳米多层膜的变形行为及摩擦磨损机理研究
生理环境下医用NiTi合金微磨损-腐蚀协同作用机制研究
凝胶注模成型医用多孔钛及合金植入材料
金属植入材料在人体环境中腐蚀行为及机理研究