Carbon nanomaterials (such as carbon nanotubes, grapheme and carbon nanoparticles) with unique physical and chemical properties have great analytical and bioanalytical potential because they comprise non-toxic elements and are biocompatible. In this proposal, we aim to find some carbon nanomaterials-involved chemiluminescence reactions in liquid phase and suggest new chemiluminescence biosensig. The preparation, passivation and modification method of carbon nanomaterials will be studied in detail in order to obtain the carbon nanomaterials with excellent chemiluminescence activity. Some organic molecular (such as luminol and hemin) will been modified onto the carbon nanomaterials through through various intermolecular interactions, such as π-π interaction, hydrophobicinteraction, hydrogen bonding,and electrostatic interaction. Some naonohybrid of carbon nanomaterials (such as gold nanoparticles?graphene, CdTe QDs?carbon nanotubes) will be synthesized. The as-prepared various carbon nanomaterals will be used as the chemiluminescence catalyst or chemiluminescence luminophor to investigate the chemiluminescence activity of the carbon nanomaterials. At the same time, the structure of these carbon nanomaterals will be characterized with some techniques (such as TEM, AFM, XRD, XPS and FT-infrared spectra). The relationship between chemiluminescence activity and the structure of carbon nanomaterals will be explored. On the other hand, the fluorescence spectra and chemiluminescence spectra will be measured to explore the chemiluminescence mechanism of the carbon-involved chemiluminescence reaction. Then, according to the obtained reaction mechanism, the approach for preparation of carbon nanomaterials will be optimized so as to obtain the chemiluminescent functionalized carbon nanomaterials. Furthermore, aptamers, nucleic acid-based reagents, have been widely reported as highly promising recognition elements for developing eletrochemical and fluorescent biosensors. Carbon nanomaterials (such as grapheme) can interact with DNA to form new nano-hybrids, and considerable achievements have been gained in the area of carbon materials-DNA hybrids. Combines the carbon namomatreals-involved chemiluminescence with aptamer, the new strategy will be suggested to design the simple and sensitive biosensors. Therefore, the proposal not only will open a new research area for chemiluminescence analysis, but also will be helpful for us to know the reaction activity of carbon nanomaterials.
在我们多年对化学发光及生物传感器研究的基础上,借鉴前人有关碳纳米材料的研究成果,本项目拟以碳纳米材料的化学发光性能为核心,系统研究碳纳米材料的制备及表面修饰方法,探究其构效关系,以期得到化学发光功能化的碳纳米材料,旨在建立起高效的碳纳米材料参与的液相化学发光体系;并利用各种谱学手段对碳纳米材料参与的化学发光反应过程进行表征,揭示此类化学发光反应机理,并根据反应机理对碳纳米材料表面钝化、修饰方法进行优化,以期进一步提高其化学发光性能;充分利用碳纳米材料DNA之间的相互作用,结合功能脱氧核糖核酸分子识别特性,以化学发光为检测信号,构建出新的生物传感新方法。这类新型生物分析方法既具有碳纳米材料在传感材料方面的优势,又具有化学发光在检测方面的优势。本项目为化学发光研究开辟新的研究方向,丰富人们对微尺度结构材料特殊性质尤其是化学反应活性的认识,对纳米科学和化学发光的基础理论研究具有重要的意义。
本项目较系统地研究了碳点、碳纳米管、氧化石墨烯等碳纳米材料参与的液相化学发光反应,发现了碳点的催化化学发光性能、碳纳米管可有效降HRP-mimicking DNAzyme-鲁米诺-过氧化氢化学发光体系背景信号的性能、氧化石墨烯高效化学发光能量转移特性,揭示了相应的化学反应机理。此外,也研究了纳米金粒子、量子点及水溶性共轭聚合物的化学发光性能。在上述研究基础上,结合生物识别过程,构建了一系列化学发光生物传感方法。另一方面,设计合成了具有高催化活性碳纳米杂合体材料(单壁碳纳米管-纳米金粒子、单壁碳纳米管-Hemin)和具有手性识别功能的金纳米粒子;将Exo III辅助的目标分子循环放大与脂质体辅助的信号放大相偶合,实现了一步双放大的信号放大策略。本项目发现了一些新的化学发光体系,给人们设计生物分析及传感提供一种新的思路,为临床医学、食品安全等领域提供简单快速、高灵敏的检测方法和技术。研究成果在Analytical Chemistry、Journal of Materials Chemistry B、Carbon等SCI源刊发表论文27篇(其中在Analytical Chemistry发表论文3篇),SCI他引共计230多次。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于碳纳米材料电化学发光猝灭效应的生物传感平台构筑及应用研究
碳氟标记的生物分子在纳米生物传感中的应用研究
纳米尺度空间生物化学发光传感及其在微区分析中的应用研究
纳米粒子诱导的液相化学发光