The project will investigate a novel Fenton-like catalyst with in-situ generation and utilization of H2O2 (Al-CNTs-Fe3O4/O2) to overcome the main disadvantages of the conventional Fenton system, for example, the instability of H2O2 results in the inconveniences of transport and storage of H2O2 and the acidic pH conditions. The research contents include: (1) to prepare a new environmental catalytic materials (Al-CNTs-Fe3O4) by liquid phase chemical deposition-high energy ball milling-melting infiltration method, which can in-situ reduce O2 to H2O2 via micro electrolysis and generate ·OH species via Fenton-like process, to probe the performance and characteristics of the generation of H2O2 and ·OH; (2) to develop a novel Fenton-like system (Al-CNTs-Fe3O4/O2), and to apply it for the removal of sulfonamides antibiotics from simulated and practical wastewater, to investigate the characteristics and mechanisms of sulfonamides antibiotics degradation by Al-CNTs-Fe3O4/O2 system; (3) to explore the degradation pathway of antibiotics by using the calculation chemical method based on DFT theory, and combining with the possible intermediate products which were identified by the HPLC-MS analyses during the degradation process of the antibiotics, and to determine the influential regulation of the structure of antibiotics and its degradation rates, and to establish the prediction model, which can be sued for predicting the performance of a antibiotics degradation in the aquatic environment.This research proposal will provide the scientific foundation and technical support for developing a new technology for the removal of antibiotics contaminants from wastewater.
本项目拟研究一种原位产生并利用H2O2的新型类Fenton催化剂(Al-CNTs-Fe3O4),以克服传统Fenton法存在的不足,如H2O2不稳定导致其利用率低、运输和储存困难、反应要求pH较低等。主要研究内容包括:(1)制备一种能够原位产生H2O2并将其转化为·OH的新型类Fenton催化剂(Al-CNTs-Fe3O4),探讨其特性及机制;(2)构建一个新型类Fenton催化体系(Al-CNTs-Fe3O4/O2),用于去除废水中的磺胺类抗生素,探讨该体系对废水中抗生素的降解特性及去除机制;(3)采用基于密度泛函理论的计算化学方法,并结合实验检测到的中间降解产物,阐明抗生素的降解途径,探讨抗生素分子结构对其降解速率的影响规律,构建利用分子结构参数预测其降解速率的模型,用于预测抗生素在水环境中的降解特性。本项目研究成果可为开发高效去除废水中抗生素类污染物的新技术提供科学依据和技术。
以抗生素为代表的新污染物已成为水污染防治的重点和难点。采用Fenton/Fenton-like 氧化去除水中抗生素是一种有效方法。然而,此过程往往采用外加H2O2药剂,存在H2O2运输贮存不便、利用效率不高等不足。为此,本项目以铝粉和导电性碳(碳纳米管和石墨)为主要原料,通过球磨-浸润熔融工艺制备了一系列铝-碳复合物(Al-C),用于还原O2原位产生H2O2;在Al-C上负载Fenton/Fenton-like催化剂M(铜、铁、氮等),制备了一系列新型Al-C-M复合材料,构建了能原位产生和利用H2O2的Fenton/Fenton-like氧化体系(Al-C-M/O2)。本项目探讨了Al-C-M的制备方法与其结构和性能的关系,探讨了Al-C-M/O2原位产生和利用H2O2的机理。将构建的Al-C-M/O2体系用于去除模拟废水和实际废水中磺胺类抗生素和四环素类抗生素,阐明了其去除作用机制。. 项目研究表明,(1)Al-C通过腐蚀电池原理可以选择性地将O2还原为H2O2,同时产生的铝离子具有混凝吸附性能。用氮掺杂的Al-C可以提高H2O2的产生效率,使其达到700mg/(g.h.L);用氯、氮共掺杂制备Al-C-M,可以省去球磨工序;(2)单独的Al-C可以在pH<3.5时原位分解H2O2为•OH;负载有nCu2O、nFe或掺氮的Al-C-M可以在中性条件下原位分解H2O2为ROS;(3)Al-C-M/O2体系可以有效降解并矿化水中的抗生素及其它新兴有机污染物。本项目研究成果为开发高效去除废水中抗生素类污染物的新技术提供了科学依据和技术支持。. 项目研究成果在EST、ACB、JHM、CEJ等期刊上发表以第一标注的论文共22篇;获得授权发明专利4项,四川省科技进步奖1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
莱州湾近岸海域中典型抗生素与抗性细菌分布特征及其内在相关性
当归补血汤促进异体移植的肌卫星细胞存活
新疆软紫草提取物对HepG2细胞凋亡的影响及其抗小鼠原位肝癌的作用
聚酰胺酸盐薄膜的亚胺化历程研究
基于相似日理论和CSO-WGPR的短期光伏发电功率预测
金属-有机骨架类Fenton体系去除水中难降解有机污染物机理研究
基于O3/H2O2工艺的多相类-Fenton过程去除水中难降解有机物机理研究
由酸性矿山废水中的Fe(II)原位制备非均相电Fenton催化剂及过程控制原理
六价铁氧化还原协同Fenton作用去除水中藻毒素的效能与机制