On-orbit fluid injection is an important part of on-orbit service aerospace project, which is a key technology for diversity of future space missions and improvement of space resources utilization. Gas-liquid separation in space is an important means to ensure the safety and reliability of on-orbit fluid injection, which have wide application in future space systems. The microgravity space environment faced in space exploration, would suppress the natural convection effect greatly suppression caused by gravity, and would be unable to completely achieve the gas-liquid phase separation in on-orbit fluid injection. Therefore, the applicant proposals a new method to solve the above problem making use of the conservative force field formed by electric field instead of gravity field, which can provide an active and enhancing means for the microgravity gas-liquid phase separation system. Through the preliminary study, it can be found that the enhancing phase separation method under the action of electric field needs to solve some key scientific problems, such as the dynamic characteristics of bubbles and gas-liquid separation mechanism in the microgravity environment based on the effect of electric field. For this purpose, in this research project, the comparison study of the microgravity drop tower experiment, the ground experiment, and the corresponding numerical simulation would be carried out to investigate the influence of the electric field on the bubble dynamics and enhancement mechanism of the electric for the gas-liquid separation mechanism. The mechanism model for the electric enhanced gas-liquid separation in microgravity would be established, and active regulation and control method of electric field enhancement of gas-liquid separation in space would be studied. The research work would provide the theoretical foundation and technology reference for solving key problems of the gas-liquid phase separation in the microgravity and heat control of high power density components, which would provide theory foundation and technology support for the study and design of effective fluid management system in on-orbit fluid injection.
在轨流体加注是未来在轨服务重大航天工程的主要组成部分,是满足未来航天任务多样性、提升太空资源利用能力的关键技术之一。其中,空间气液相分离是保障在轨流体加注安全可靠运行的重要手段,对未来空间系统意义重大。太空探索所面临的微重力空间环境,大大抑制了重力引起的自然对流效应,难以彻底实现在轨流体在注气液相分离。为此,申请人提出采用电场形成的保守力场来代替重力场,为微重力流体气液相分离系统提供一种新的主动控制手段。通过前期研究发现,基于电场效应的微重力气液相分离强化方法需要解决电场作用下气泡动力学特性和微重力气液相分离机制等关键科学问题,为此,本项目拟在理论分析和数值仿真研究基础上,利用微重力落塔和地面实验的对比研究,揭示电场对气泡动力学的影响和作用机制,建立微重力下电场主动控制气液相分离机理模型,研究电场强化空间气液相分离的主动调节和控制方法,为在轨加注有效流体管理系统的研究和设计提供技术参考。
空间气液相分离是保障在轨流体加注安全可靠运行的重要手段,对未来空间系统意义重大。太空探索所面临的微重力空间环境,大大抑制了重力引起的自然对流效应,难以彻底实现在轨流体加注时气液相分离。为此,本项目引入电水动力学EHD理念,采用电场形成的保守力场来代替重力场,创新提出一种基于电场效应的微重力液体 气液相分离的主动控制方法,可为空间微重力多相流的相分布控制系统的研究和设计提供一种全新技术手段。在微重力条件下电场强化产生的电水动力EHD效应涉及电场、流场、温度场、重力场和相界面之间的耦合作用,机理复杂,因此项目通过理论建模、数值仿真和物理实验相结合的方式,重点开展了微重力下电场强化气液相分离机理研究、微重力下电场对气液相分离控制模型和方法研究以及基于电场效应的空间相界面演化规律和稳定性影响研究。项目相关研究揭示了电场强化微重力气液相分布控制和流体输运的物理机制,建立了微重力下电场对气液相分离控制模型和方法,形成一套基于电场效应的微重力流体相分布控制与多场耦合流体分析方法。此外,本项目还创新提出等密度“液-液”地面试验方法来等效模拟微重力空间环境,可为航天系统开展地面微重力试验工作提供一种简单实用有效的新方法。本项目研究成果可强化空间微重力环境下两相流输运,实现空间气液相分离主动调节和控制,从而解决了在轨加注有效流体管理系统的气液相分离难题,可为航天重大工程多相流系统装备研究提供相关理论指导和技术参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
颗粒流体气液相分离
微重力下两相流体回路流动传热特性及气液分布控制方法研究
微重力储箱内非均匀气液两相低温流体的热力学排气机理研究
轮缘驱动潮流能发电机气隙内海水磁流体效应及多场耦合机理研究