Usual difference schemes are constructed basing on Taylor expansion of the solution. The difference schemes based on approximate Taylor expansion of the solution function don't be suited to the problems with sharp functions partly (e.g. boundary layer, highly oscillation), because the method requires the solution to be slow variance relative to mesh scale. The difference schemes of coefficient approximation that we propose are constructed basing on Taylor expansion of the coefficient. The coefficient approximate method is a robust solution method for boundary layer as well as high oscillatory in linear boundary value and eigen-value problems.
等离子体丰富的物理现象提出了一些至今求仍然很困难的数值问题,如奇扰动问题、高荡问题、反向点及多尺度问题等。本工作将用解函数的局部特征构造函数的局部基,导出几种新的差分格式。新格式避免了传统差分求解引起的非物理振荡和解的畸变,因而新式能有效地求解一些困难的数值问题,从而研究相关的物理问题提供了强有力的手段。
{{i.achievement_title}}
数据更新时间:2023-05-31
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
钢筋混凝土带翼缘剪力墙破坏机理研究
气载放射性碘采样测量方法研究进展
双吸离心泵压力脉动特性数值模拟及试验研究
极光增亮现象的全球MHD数值模拟
实验包层流道插件MHD效应的数值模拟研究
三维磁重联的全球MHD数值模拟研究
多相流中界面问题的数值模拟方法及其应用