Microforming is difficult to be conducted only using micro-die for loading with decreasing of dimensions of micro-parts. The issues of scale limit for microforming receive much more attentions. In this project, new theory, new method and new process of nontraditional energy field microforming using electric,electromagnetic and ultrasonic field will be investigated aiming at the fabrication of target with thin wall used in laser inertial fusion, capillary with thin wall used in micro-heat-exchanger in aero-engine with hypersonic speed, micro-array structure in vapor chamber of thermal control system used for the satellite. The mechanism will be studied for cooperative control and coupling between the nontraditional energy field and force field during microfomring. Meanwhile, the response mechanism of mechanical properties with the action of the different energy fields and microstructural evolution will be illuminated by investigating the physical effects of energy fields, size effects in microforming and interfacial effects. The physical mechanism can be revealed size effects of nontraditional energy field microforming under the function of multiple field coupling. On this basis, modeling approach in trans-scale is proposed for nontraditional energy field microforming and scale limit will be predicted for classical nontraditional energy field microfomring. In the end, the new theory and new method of nontraditional energy field microforming will be established and micro-parts will be fabricated with controlled quality using several kinds of materials in trans-scale. This project has a great significance in breaking out the scale limit and promoting development of theory and application of microforming.
微型构件尺度的不断减小,使得单纯依靠模具施加载荷的微成形技术难以进行,微成形技术尺度极限问题越来越受到人们的关注。本项目针对激光惯性核聚变微靶薄壁构件、高超声速发动机换热系统薄壁毛细管和星用热控系统蒸汽腔阵列微结构等微型构件,开展电场、电磁场和超声波等特种能场作用下塑性微成形新理论、新方法和新工艺的研究,揭示特种能场及其与微成形力场耦合与协同控制机理,研究特种能场作用的物理效应、微成形尺度效应和界面效应,阐明不同特种能场作用下材料力学性能响应机制和微观组织结构演变规律,揭示多场耦合作用下特种能场微成形尺度效应物理本质,提出特种能场微成形过程的跨尺度建模方法,预测典型特种能场微成形工艺的尺度极限,建立特种能场微成形新理论和新方法,实现微型构件的跨尺度、多材料和可控制造。项目的实施对于突破塑性微成形尺度极限,促进微成形技术发展和应用以及推动塑性成形理论发展具有重要意义。
微型构件尺度的不断减小,使得单纯依靠模具施加载荷的微成形技术难以进行,微成形技术尺度极限问题越来越受到人们的关注。本项目针对激光惯性核聚变微靶薄壁构件、高超声速发动机换热系统薄壁毛细管、星用热控系统蒸汽腔阵列微结构、空间驱动机构钛合金微齿轮和燃料电池双极板阵列微通道等微型构件,开展了电场、电磁场和超声波等特种能场作用下塑性微成形新理论、新方法和新工艺的研究,揭示了特种能场及其与微成形力场耦合与协同控制机理,研究了特种能场作用的物理效应、微成形尺度效应和界面效应,阐明了不同特种能场作用下材料力学性能响应机制和微观组织结构演变规律,揭示了多场耦合作用下特种能场微成形尺度效应物理本质,提出了特种能场微成形过程的跨尺度建模方法,预测了典型特种能场微成形工艺的尺度极限,建立了特种能场微成形新理论和新方法,实现了微型构件的跨尺度、多材料和可控制造。项目发表学术论文63篇,获授权国家发明专利13件。项目的实施对于突破塑性微成形尺度极限,促进微成形技术发展和应用以及推动塑性成形理论发展具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
跨社交网络用户对齐技术综述
特斯拉涡轮机运行性能研究综述
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
中国参与全球价值链的环境效应分析
特种宏微近净塑性成形基础研究
微型构件精密塑性微成形关键技术与基础理论
纳米材料微阵列超塑性微成形机理与尺度效应
超声复合能场焊接新方法及基础理论研究