Visible light-near-infrared dual-band electrochromic smart windows can selectively control the transmittance of visible sunlight and solar heat into buildings, and have important applications in the field of energy-saving buildings. The single-component doped TiO2 nanocrystals (NCs) can be used to construct the dual-band electrochromic smart windows, however, their performances still are insufficient in near-infrared selective modulation range and slow in the visible-light response time. Increasing the free electron concentration adjustment range of NCs and enhancing their redox reaction rates are the key issues to improve their dual-band electrochromic performance. In this project, novel tungsten-doped TiO2 NCs as the research system are used to systematically study the effect of NC dopant concentration and position, NC size and morphology on their plasmonic properties under electrochemical regulation, and reveal the mechanism dynamic adjustment of free electron concentration in NCs. Solution processing through NC surface ligand exchange technology is subsequently explored and optimized, then mesoporous conductive tungsten-doped TiO2 NC film with high porosity to enhance the rate of the redox reaction of NCs is constructed. Further the dual-band electrochromic properties of NC-mesostraured films are systematically characterized to clarify the relationship within the preparation of tungsten-doped TiO2 NCs, mesostraured films, and electrochromic properties and accordingly disclose the working mechanism of the dual-band electrochromism. Current work might put forward the study of dual-band ectrochromic smart window with strong near-infrared selective regulation and fast visible spectral response time, and provide some scientific data and basic theories for their technology research and potential applications.
可见-近红外分区电致变色智能窗能选择性地调控可见阳光和太阳能热量进入建筑物的穿透率,在节能建筑领域具有重要的应用前景。掺杂TiO2纳米晶单一材料能实现分区电致变色智能窗的构筑,然而其性能仍面临近红外调节能力不足和可见光响应过慢等挑战。提高纳米晶自由电子浓度调节范围和氧化还原反应速率,是提升其分区电致变色性能的关键。本项目将选择新型钨掺杂TiO2纳米晶为研究体系,系统研究钨掺杂浓度和位置、基体尺寸和形貌等因素对其等离子体吸收电化学调节性能的影响,理解自由电子浓度动态调节机制;优化纳米晶表面无机离子配体,探究成膜工艺,构筑高孔隙率导电介孔纳米晶薄膜,提高其氧化还原反应速率。项目将系统研究纳米晶薄膜的电致变色性质,阐明钨掺杂TiO2纳米晶制备-薄膜构筑-电致变色特性的内在关联,揭示其电致变色机理,获得兼具近红外调节能力强和可见光响应快的分区电致变色薄膜材料,具有显著的科学意义和潜在的应用前景。
可见-近红外分区电致变色智能窗能选择性地调控可见阳光和太阳能热量进入建筑物的穿透率,在节能建筑领域具有重要的应用前景。本项目围绕拓展纳米晶自由电子浓度动态调节的范围和提高纳米晶薄膜氧化还原反应的速率这一关键科学问题,来提升纳米晶分区电致变色性能。代表性结果如下:(1)基于氟化物辅助法,制备了一系列不同钨掺杂浓度和尺寸的二氧化钛纳米晶,并研究了其在不同价金属离子电解质中的电致变色性能和相应的物理机制。特别地,在二氧化钛纳米晶膜中实现了锌阳极电致变色器件,该器件具有高的光调制范围(在550 nm时为66%)、快速的光谱响应时间(在550 nm时的着色/褪色时间为9/2.7 s)和良好的循环稳定性(1000次循环后的光调制损耗为8.2%)。(2) 基于溶胶-凝胶策略,使用发泡剂调控了钛掺杂氧化钨纳米晶膜的物态性能。所制备的纳米晶膜显示出优异的双波段电致变色性能,包括高光学调制(633 nm时为84.9%,1200 nm时为90.3%)、高着色效率(633 nm下为114.9 cm2 C-1,1200 nm下为420.3 cm2 C-1)、快速切换时间、优异的双稳态、以及良好的循环稳定性(1000次循环后633和1200 nm处的透射率调制损耗分别为11%和3.5%)。(3)基于单组分聚苯胺纳米晶薄膜设计了具有多色转换能力的双波段电致变色智能窗。研究表明,渐进的电化学反应使聚苯胺纳米晶膜不仅能够表现出多色转换的能力,而且能有效且独立地控制红外光和可见光透射率,展现出高着色效率(633 nm时为367.1 cm2 C-1,1600 nm时为299.6 cm2 C-2),以及优异的循环稳定性(10000次循环后633和1600 nm处的光学调制损耗分别为6%和4%)。项目系统地研究纳米晶薄膜的电致变色性质,阐明了纳米晶制备-薄膜构筑-电致变色特性的内在关联,揭示了其电致变色机理,获得了兼具近红外调节能力强和可见光响应快的分区电致变色薄膜材料。项目的研究将为发展高性能分区电致变色智能窗提供了理论支持和技术参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于二维材料的自旋-轨道矩研究进展
可见-近红外分区可控全固态柔性电致变色器件的构筑与性能研究
多钨酸盐修饰二氧化钛纳米线薄膜的制备与电致变色性能研究
氧化钨纳米晶的等离子电致变色研究
稀土和非金属共掺杂氧化钨介晶的有效合成及其电致变色行为研究