Target parameter estimation under non-ideal environments using passive radar will be investigated. The non-ideal environments may include the estimation error of the transmitted waveforms, leakage of the direct path signals, interference caused by multipath clutter, etc. Under such non-ideal cases, in order to improve the estimation accuracy of the passive radar system, we propose to develop environmental knowledge-based passive MIMO (KPMIMO) radar. Environmental cognition technology is employed to learn the environment around the target and to extract the environmental parameters, which enables the passive radar to be adaptive to the surrounding environment. The implementation of the spatially spreaded MIMO technology enables the radar to probe the target from different angles to obtain more abundant information about the target. According to the phase synchronization capability and the geometric relationship between the radar stations and the target, the KPMIMO radar can operate in either coherent or noncoherent mode. The parameter estimation theory of the KPMIMO radar for both modes will be studied. Parameter estimation in the case of multiple targets will be looked at. The expected Cramer-Rao bound (ECRB) and Ziv-Zakai bound (ZZB) will be derived to evaluate the estimation performance. The strategy for selecting transmitters of opportunity and the approach for receive station placement will be investigated. The proposed research will provide theoretical insights and technological supports to the research and development of the new generation passive radar with good environment adaptability and enhanced estimation accuracy.
本项目针对非理想环境中外辐射源雷达的目标参数估计问题开展研究,这些非理想因素包括发射波形估计不准、直达波泄漏、多径杂波干扰等。为提高非理想环境中外辐射源雷达系统的参数估计精度,本项目提出基于环境认知的外辐射源MIMO(KPMIMO)雷达方案:采用认知技术来学习目标环境,提取环境参数,使外辐射源雷达具有适应环境的能力;采用空间分集的MIMO技术来使雷达从多个方向照射和探测目标,以获取更加丰富的目标测量信息。根据系统的相位同步能力及雷达站与目标的几何关系,KPMIMO雷达可工作在相干处理或非相干处理模式,本项目分别研究这两种模式下的KPMIMO雷达参数估计理论,考虑多目标情况下的参数估计,给出评价参数估计性能的ECRB界和ZZB界,提出改善估计性能的外辐射源选择策略及接收站位置选取方法,为研制和发展新一代的具有良好环境适应能力和参数估计能力的外辐射源雷达提供理论储备和技术支撑。
本项目针对非理想环境中外辐射源雷达的目标参数估计问题开展研究,这些非理想因素包括发射波形估计不准、直达波泄漏、多径杂波干扰等。为提高非理想环境中外辐射源雷达系统的参数估计精度,本项目提出基于环境认知的外辐射源MIMO(KPMIMO)雷达方案:采用认知技术来学习目标环境,提取环境参数,使外辐射源雷达具有适应环境的能力;采用空间分集的MIMO技术来使雷达从多个方向照射和探测目标,以获取更加丰富的目标测量信息。根据系统的相位同步能力及雷达站与目标的几何关系,KPMIMO雷达可工作在相干处理或非相干处理模式,本项目分别研究这两种模式下的KPMIMO雷达参数估计理论,考虑多目标情况下的参数估计,给出评价参数估计性能的ECRB界和ZZB界,提出改善估计性能的外辐射源选择策略及接收站位置选取方法,为研制和发展新一代的具有良好环境适应能力和参数估计能力的外辐射源雷达提供理论储备和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
伴有轻度认知障碍的帕金森病~(18)F-FDG PET的统计参数图分析
中国参与全球价值链的环境效应分析
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
宽带认知MIMO雷达认知发射研究
基于信号结构信息的MIMO雷达参数估计方法
基于分层博弈的认知MIMO雷达资源管理方法研究
基于大维随机矩阵理论的MIMO雷达稳健目标检测与估计