Small diameter timbers from shrubbery have the advantages of rich in resources, compact structure, high specific gravity.After being compressed and fixed ,them have great application potential in advanced composite materials, indoor and outdoor engineering materials and other industrial fields. However,them have the disadvantages of small diameter class, considerable difference,irregular shape, complicated composition and poor stability of the size after being compressed.All these defects lead to low processing efficiency, serious waste of resources, and the bottleneck of their further study. So,3 kinds of small diameter timbers from shrubbery with the most industrialized utilization prospect were selected as the research object, the purpose of this project is to obtain compressed wood with high strength and good dimensional stability through synergy effect of heat ,moisture and mechanics (tension and pressure). The morphological characteristics and chemical structure of small diameter timbers and their plasticized samples;will be analyzed at the nanoscale and molecular level by modern methods such as SEM,NMR and so on. To characterize plasticizing effect in small diameter timbers plasticizing, the influence of heat ,moisture and mechanics on the thermal plasticization of small diameter timbers will be analyze, and the thermal plasticization effect coupling and superposition mechanism of small diameter timbers’ components will be proved. The project is also aimed at analyzing the mechanism of molecular hinge and chemical bond of small diameter timbers’ components,establishing a quantitative model, determing the optimal thermal plasticization process, and finally revealed the plasticization self-reinforce mechanism of small diameter timbers. This study will achieve significant breakthrough in the field of high quality and efficiency processing and utilization technology for China's small diameter timbers from shrubbery,and provide technical support for shrub biomass resources to maximize utilization.
灌木林小径木资源丰富,结构致密,强重比高,在先进复合材料、室内外工程材等领域具有巨大应用潜力。然而,其径级小且差异大、外形不规整、成分复杂、压缩后尺寸不稳定等缺陷导致其利用率极低,造成资源严重浪费,成为制约其深入研究的瓶颈。本项目拟选用最具工业化利用前景的3种灌木林小径木为研究对象,通过湿、热、力的协同作用,研制高强度、高尺寸稳定性的压缩木。采用热台环境扫描电镜、固体核磁共振等现代分析手段,在纳米和分子尺度上解析灌木林小径木及塑化试样的形貌特征与化学结构,表征小径木塑化中塑化效应,解析湿、热、力对小径木塑化的影响规律,探明小径木成分的塑化效应耦合与叠加机理;解析小径木成分间的分子铰链和化学键合机理,建立量化模型,确定最佳塑化工艺,最终揭示小径木塑化自增强机制。该研究将在解决严重制约我国灌木林小径木高品位加工利用技术领域中实现重大理论突破,同时为灌木生物质资源最大化利用提供技术支撑。
灌木林小径木资源丰富,结构致密,强重比高,在先进复合材料、室内外工程材等领域具有巨大应用潜力。本项目选用黄荆木、黄杨木等灌木林小径木为研究对象,探明了热湿力协同作用下的塑化剂重组塑化和细胞壁调控自复合塑化方式,确定了最佳塑化工艺;在纳米和分子尺度上解析了灌木林小径木及塑化试样的微观结构、塑化效应、分子铰链程度,解析了热湿力协同作用对灌木林小径木塑化的影响机制;探明了小径木塑化自增强过程中各组分的表面官能团的变化规律,明确了塑化过程化学键相互作用对自增强的影响规律;揭示了灌木林小径木在塑化自增强中的高强度结合机制;在我国灌木林小径木高附加值利用技术领域中实现重大理论突破。在项目的资助下,累计发表学术论文11篇;申请国家发明专利4件,授权2件;培养国家级、省部级人才计划6人次,在读博士研究生2人;协办学术论坛2次,做特邀报告6次,科普活动2次;为灌木生物质资源高附加值利用提供技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
钢筋混凝土带翼缘剪力墙破坏机理研究
硫化矿微生物浸矿机理及动力学模型研究进展
面向精密位置服务的低轨卫星轨道预报精度分析
基于化学反应动力学方程的一维膨胀时程模型
混凝土介观热-湿-力耦合离散模型与高温爆裂机理研究
竹材细胞壁自塑化机理与自结合机制研究
自汲水蒸发冷却复合屋面的热湿迁移及其对建筑热环境的调控机理研究
湿-热-力耦合下ECC准应变-硬化机理的变分渐近多尺度表征