The wear performance of crucial mechanical component is one of the bottlenecks that constrains the high reliability, high precision, high efficiency of high technology industry. This project puts forward to combining the special advantages of multilayer composite and the multi-scale structure design to achieve the controllable fabrication of high toughness and wear resistances Cr(X)N/MeN multilayer composite films. Firstly, the different scale structures design of the composite films will be performed in virtue of the first-principles calculations. The chemical bonds in the molecular/nano-scale, the coherent interfaces between sublayers in nano-scale and the gradient interfaces design in micro/nano-scale will be performed and the films will be fabricated by magnetron sputtering combined with high energy ion implantation technique. Secondly, the structure activity relationship of the Cr(X)N/MeN multilayer composite films between the multi-scale design and the tribological performances will be systematically explored. Furthermore, the toughness mechanisms, the wear mechanisms and the long time duration mechanisms of the Cr(X)N/MeN multilayer composite films by the multi-scale structures design will be analyzed and emphasis clarified. Finally, the multi-scale structures design criteria would be provided to construct the high toughness, high wear resistance and long-lifetime Cr(X)N/MeN multilayer composite films. These results will provide new ideas and approaches for the designing and fabrication of high performances structure-function integrated films materials used in aerospace and high and new technology fields.
核心摩擦副零部件的摩擦磨损问题是制约高新技术产业及现代装备高可靠性、高精度、高传输效率的关键瓶颈之一。本项目拟协同利用多层复合、多尺度结构设计的独特优势,以第一性原理模拟为指导,采用磁控溅射结合高能离子注入技术为制备手段,从原子/分子尺度调控化学键键合、纳米尺度调控形成共格界面生长结构、微/纳米尺度梯度过渡设计进行Cr(X)N/MeN多层复合薄膜的结构设计;突破薄膜不同尺度微结构的可控制备,设计制备出高硬度、强韧性、耐磨损的Cr(X)N/MeN多层复合薄膜;揭示多尺度结构设计对薄膜微结构、摩擦学行为的影响及其构效关系,重点阐明Cr(X)N/MeN多层复合薄膜多尺度结构设计的增韧机制、磨损机理及长寿命机制,最终提出强韧化、耐磨损、长寿命Cr(X)N/MeN多层复合薄膜的多尺度结构设计准则。为高新技术产业摩擦副部件表面高性能结构—功能防护一体化薄膜材料的设计和制备提供新途径。
核心摩擦副零部件的摩擦磨损及腐蚀问题是制药高新技术产业及现代装备高可靠性、高精度、高传输效率的关键瓶颈之一。本项目协同利用多层复合、多尺度结构设计的优势,采用多弧离子镀技术结合化学键键合、界面调控、梯度过渡方面设计并制备了CrZrN/ZrN、CrAlN/CrN及Cr/CrN/CrCN多层复合薄膜,实现了薄膜的可控制备。结果表明:(1)金属Zr层较Cr层具有更好的抗裂纹扩展性能,半共格界面、高韧性Zr层与低摩擦CrN层的协同效应使Zr/CrN多层薄膜具有优异的耐磨损性能。(2)调制比 (tCrZrN/tZrN)为7.4:1的CrZrN/ZrN多层薄膜呈半共格的界面结构。致密的结构和合适的多层界面使得该CrZrN/ZrN多层薄膜具有优异的耐腐蚀性能,退火处理后薄膜的耐腐蚀性能更佳。(3)合适调制比和周期数的CrAlN/CrN多层复合薄膜的腐蚀电流密度可低至1.459×10-7A/cm2,呈现出优异的耐腐蚀性能。(4)梯度过渡和多层结构设计的Cr/CrN/CrCN多层薄膜具有较高的硬度和较好的韧性,薄膜的磨损率较单层CrN薄膜降低了约64%。本项目的研究为高新技术产业摩擦副部件表面高性能结构-功能一体化功能防护薄膜材料的设计和制备提供了新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
纳米结构梯度复合多层润滑薄膜的合成及其摩擦学机理
DLC基纳米复合多层梯度薄膜的合成及其摩擦学性能研究
铝合金表面原位自生(Ti,Cr)N/Al-(Ti,Cr)多层复合结构调控与摩擦学行为研究
强韧化高熵合金/陶瓷复合薄膜仿生微结构设计及磨蚀机理研究