With the rapid development of semiconductor laser diode (LD), the development and production of LD pumped all-solid-state ultrafast laser ( 10-12s ~10-15s) have become one of the most popular projects of high technology and related industries. The mid-infrared ultrashort pulse laser near 3μm has an important application in basic scientific research, biomedical, military and so on for the narrow pulse width, high power, high energy and high monochromaticity. In addition, the mid-infrared ultrashort pulse laser near 3μm has potential application prospects in environmental pollution analysis, gas detection, remote sensing, communication and other fields. The study of the mid-infrared ultrashort pulse laser near 3μm is one of the most popular projects at home and abroad. In view of the above, this project will study on the mode-locked ultrafast lasers of 3µm based on wideband saturable absorption of black phosphorus. In this project, we will improve and optimize the preparation technique in order to prepare black phosphorus with size-controlled and high quality. We will carry out theoretical research on mode-locking ultrafast laser dynamics of black phosphorus saturable absorbers according to test and analyze the physicochemical properties of two-dimensional black phosphorus. The intrinsic relationship between macroscopic parameters and microstructure of the nonlinear saturation absorption mode-locking dynamic process of black phosphorus will be analysed. According to the nonlinear Schrödinger equation, a theoretical model is established based on the black-phosphorus saturable absorber mode-locked Er3+ crystal solid-state laser. According to the numerical simulation results, the parameter range of 3μm stable mode-locking in Er3+ all-solid-state laser can be obtained. The according to the optimized design of parameters can obtain high efficiency, high power, low cost 3μm picosecond, femtosecond pulse output with the peak power up to hundred watts. The research results of this project will provide effective theoretical and experimental basis for the design and implementation of mid-infrared ultrafast lasers to meet the urgent needs of portable high-performance 3μm mid-infrared ultrafast lasers in the industrial and defense fields.
随着半导体激光二极管(LD)的迅猛发展,LD 泵浦的全固态超快激光器(一般在皮秒10-12s或飞秒10-15s量级)的研制和生产成了高新技术及相关产业的热点之一。3μm波段中红外超快激光的窄脉宽、高功率、高能量、高单色性等优点使其在基础科学研究、生物医疗、军事等方面有着重要的应用。此外,3μm波段中红外超快激光在环境污染分析、毒气探测、遥感、通信等领域拥有潜在的应用前景。3μm波段中红外超快激光研究是国内外研究热点之一。基于以上原因, 本项目将展开基于黑磷可饱和吸收特性的 3μm 锁模全固态超快激光性能研究。通过对现有制备工艺进行改进和优化,制备形状、大小、厚度可控的二维黑磷可饱和吸收体;测试和分析二维黑磷的物化性能,开展黑磷可饱和吸收体锁模超快激光动力学理论研究,分析黑磷非线性饱和吸收锁模动力学过程的宏观参量与微观结构之间的内在关系;根据非线性薛定谔方程建立基于黑磷可饱和吸收体锁模掺Er3+晶体全固态激光器理论模型,根据数值模拟结果得到掺Er3+全固态激光器中产生3μm稳定锁模的参数范围;对参数进行优化设计,实现黑磷锁模的高效率、大功率、低成本3μm波段皮秒、 飞秒脉冲输出, 峰值功率百瓦级。本项目的研究成果,将为中红外超快激光器的设计和实现提供有效的理论及实验依据,以满足当前工业、国防等领域对便携式高性能3μm波段中红外超快激光器的迫切需求。
本项目旨在探索基于二维纳米材料宽带可饱和吸收特性的全固态超快激光器的应用研究。在执行期间,遵循既定的研究方案和计划,较好的完成了本项目的研究目标。主要研究成果如下:(1)使用提拉法生长了不同浓度(10at%,20at%和30at%)掺杂的Er3+:SGGO晶体,通过对其光学性能的测试分析表明,高掺杂(10-30at%)的Er3+:SGGO晶体具有良好的光学性能,实现了2.8μm 短脉冲激光输出。(2)探索利用液相剥离法、水热法、溶剂热法制备尺寸可控的二维黑磷、纳米复合粉体Bi2Te3、Sb2Te3以及Bi2Te3-Sb2Te3异质结材料工艺。使用高分辨透射电镜和扫描电镜观察材料尺寸形貌以及结构;通过拉曼光谱测试得到精细的结构特征和缺陷数据;测量纳米材料的非线性吸收光谱。根据测量结果对比不同制备条件对材料质量和尺寸的影响,优化制备技术,拓宽此类材料的应用空间。(3)实现了BPSA被动调Q的1042.6nm和1045.0nm的稳定双波长脉冲激光器。其最大的脉冲重复率和脉冲能量可分别达120.1kHz和0.49µJ,最短的脉冲宽度为635ns,最大的输出功率为59mW。. 项目执行期间,基于BP的可饱和吸收特性实现了1.0μm 波段稳定的短脉冲激光输出,为激光器技术领域寻找低功耗、窄脉宽激光光源提供新的研究方向。同时为了避免单一材料应用的局限性,我们将相关研究拓展到拓扑绝缘体、过渡族金属硫化物以及结合两种、两种以上二维材料异质结领域,有望获得性能优越的新型光学功能材料。
{{i.achievement_title}}
数据更新时间:2023-05-31
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
基于LS-SVM香梨可溶性糖的近红外光谱快速检测
萃取过程中微观到宏观的多尺度超分子组装 --离子液体的特异性功能
基于腔内级联变频的0.63μm波段多波长激光器
吹填超软土固结特性试验分析
基于黑磷可饱和吸收体的色散管理锁模光纤激光器研究
基于金纳米棒可饱和吸收体的3μm波长锁模光纤激光器的研究
石墨烯-Bi2Te3异质结锁模的全固态超快激光研究
全固态2微米波段子带间跃迁半导体锁模超快激光特性研究