四元数在计算机辅助几何设计与计算机图形学中的应用研究

基本信息
批准号:11601115
项目类别:青年科学基金项目
资助金额:19.00
负责人:邢燕
学科分类:
依托单位:合肥工业大学
批准年份:2016
结题年份:2019
起止时间:2017-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:陈晓彦,许任政,樊文,白龙
关键词:
四元数透视投影渐近迭代逼近插值样条曲线对偶四元数
结项摘要

Quaternions are a kind of number system which extend complex numbers to 4-dimensional space, and form four-dimensional associative normed division algebra over real numbers. In the field of computer graphics, quaternions are generally used to express rotation and orientation. They make rotation calculation more simple, convenient and elegant. So unit quaternion curves are often used to express orientation curves for rigid body motion in 3D animation. Quaternions have been being more widely used in many fields. This project intends to carry out the research on quaternions and their applications in computer aided geometric design and computer graphics. The topics include: (A)Construction of fairing unit quaternion interpolation spline curves; (B)Progressive iteration approximation algorithm and convergence analysis for unit quaternion B-spline curves ; (C)Dual quaternion perspective projection method and its applications. These topics are not only of great theoretical significance, but also of high practical values in developing China's animation industry, improving the level of high-tech product design in CAD , enhancing the market competitiveness of the products, etc.

四元数把复平面推广到四维空间,形成实数上的四维结合赋范可除代数。在计算机图形学领域,四元数一般用来表达旋转和朝向,它使得旋转计算更加简洁、方便、优雅。因此单位四元数曲线常用来表示3D动画中刚体运动的朝向曲线。四元数的应用领域正不断拓展。本项目拟开展四元数在计算机辅助几何设计与计算机图形学中的应用研究,具体内容包括:一、光顺的单位四元数插值样条曲线的构造;二、单位四元数B样条曲线的渐进迭代逼近算法及收敛性分析;三、对偶四元数透视投影方法及其应用研究。本课题不仅具有重要的理论意义,而且对发展我国动漫产业,增强产品设计与制造中的高新技术含量,增进产品的市场竞争能力等具有实际价值。

项目摘要

由于四元数表达旋转的简洁性和直观性,单位四元数曲线常用来表示3D动画中刚体运动的朝向曲线。四元数的应用领域正不断拓展。本项目预定开展四元数在计算机辅助几何设计与计算机图形学中的应用研究,具体内容包括:一、光顺的单位四元数插值样条曲线的构造:C2连续的单位四元数插值样条曲线的构造、C3连续的单位四元数插值样条曲线的构造、带参数的G2连续的单位四元数超值样条曲线;二、单位四元数B样条曲线的渐进迭代逼近算法及收敛性分析;三、对偶四元数透视投影方法及其应用研究。本课题不仅具有重要的理论意义,而且对发展我国动漫产业,增强产品设计与制造中的高新技术含量,增进产品的市场竞争能力等具有实际价值。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

基于分形维数和支持向量机的串联电弧故障诊断方法

基于分形维数和支持向量机的串联电弧故障诊断方法

DOI:
发表时间:2016
3

异质环境中西尼罗河病毒稳态问题解的存在唯一性

异质环境中西尼罗河病毒稳态问题解的存在唯一性

DOI:10.16119/j.cnki.issn1671-6876.2017.04.001
发表时间:2017
4

不同pH值下锑(V)对大麦根伸长的毒性及其生物配体模型的构建

不同pH值下锑(V)对大麦根伸长的毒性及其生物配体模型的构建

DOI:10.7524/AJE.1673-5897.20200216001
发表时间:2020
5

能谱联合迭代重建在重度肝硬化双低扫描中的应用价值

能谱联合迭代重建在重度肝硬化双低扫描中的应用价值

DOI:10.3760/cma.j.issn.0254-5098.2019.04.012
发表时间:2019

相似国自然基金

1

计算机辅助设计与图形学中的全新几何变换

批准号:61070065
批准年份:2010
负责人:王国瑾
学科分类:F0209
资助金额:35.00
项目类别:面上项目
2

计算机图形学在化学上的研究---计算机辅助药物设计

批准号:68675023
批准年份:1986
负责人:朱敏慧
学科分类:F0304
资助金额:6.00
项目类别:面上项目
3

计算机图形学与计算机辅助设计的理论和实现方法研究

批准号:68673016
批准年份:1986
负责人:刘慎权
学科分类:F02
资助金额:2.50
项目类别:面上项目
4

抗真菌药物计算机图形学辅助设计研究

批准号:39470830
批准年份:1994
负责人:张万年
学科分类:H3407
资助金额:7.50
项目类别:面上项目