The multi-rope winding mine hoist is a key equipment in the transportation of deep mine shaft. Intense fluctuating load of hoisting steel wire rope subjected to multiple disturbance excitation will cause great impact and damage to the hoisting system, therefore, it is a vital measure to realize safe running of hoisting system in deep mine shaft. The present project is to focus on revealing instability mechanism of fluctuating load of hoisting steel wire rope in deep mine shaft, and then propose feasible method to suppress the fluctuating load of steel wire rope. First, the disturbance model of fluctuating load based on the longitudinal-transverse-lateral coupled vibration of hoisting steel wire rope is to be established by considering the multiple disturbance excitation, and the instability mechanism of fluctuating load will be investigated theoretically and experimentally. Subsequently, to provide test data for the experimental analysis of instability mechanism of fluctuating load of hoisting steel wire rope, a method to measure the spatial transverse vibration of multiple rope under severe conditions is to be developed using the theory of three-dimensional reconstruction of parallel binocular stereo vision. Eventually, a magnetorheological damping suspension device is creatively proposed to be installed between the end of the hoisting rope and the hoisting conveyance. Considering the magnetorheological damping force and the multiple disturbance excitation, the controlled state equation of fluctuating load of steel wire rope is to be established, then the semi-active control law will be theoretically and experimentally explored in order to effectively suppress the fluctuating load of hoisting rope subjected to multiple excitation. The present project will provide theoretical foundation and method support for the stable operation of hoisting system in deep mine shaft.
多绳缠绕式矿井提升机是深部矿井提升的关键装备。多扰动激励下提升钢丝绳剧烈的动载荷易对提升系统造成巨大的冲击和损害,因此,实现提升钢丝绳动载荷的减弱,是保证深井提升安全的重要举措。本项目致力于揭示深部矿井提升钢丝绳动载荷失稳机理,并提出可行的钢丝绳动载荷抑制方法。首先,考虑多扰动激励,基于钢丝绳纵-横-侧多向耦合振动建立钢丝绳动载荷扰动模型,理论与实验研究钢丝绳动载荷失稳机理;其次,基于平行式双目立体视觉三维重建理论,研究恶劣工况下多钢丝绳空间复合横向振动检测方法,为钢丝绳动载荷失稳机理的实验研究提供数据支持;最后,创造性地提出在钢丝绳末端与提升容器之间增设磁流变阻尼悬挂装置,考虑多扰动激励与磁流变阻尼力,建立钢丝绳动载荷受控状态方程,理论与实验探索钢丝绳动载荷半主动控制律,实现多扰动激励下深部矿井提升动载荷的有效抑制。本项目的研究可为深部矿井提升系统的平稳运行提供理论基础和方法支持。
多绳缠绕式矿井提升机是深部矿井提升的关键装备。多扰动激励下提升钢丝绳剧烈的动载荷易对提升系统造成巨大的冲击和损害,因此,实现提升钢丝绳动载荷的减弱,是保证深井提升安全的重要举措。本项目旨在研究深部矿井提升钢丝绳动载荷失稳机理以及钢丝绳动载荷的抑制。首先,准确描述了卷筒缠绕及刚性罐道故障引起的扰动激励,基于拉格朗日方程及ADAMS虚拟样机建立了定长悬绳空间横向振动模型、垂直提升钢丝绳纵向振动模型及多向耦合振动模型;研究了定长悬绳的空间横向振动特性;研究了卷筒缠绕冲击下的垂直绳动载荷扰动特性;研究了刚性罐道故障激励下的垂直绳动载荷及横向振动扰动特性。基于提升试验台对理论模型的正确性及扰动特性进行了验证研究。基于平衡油缸及磁流变阻尼器设计了一款适用于深部矿井提升系统减振的新型悬挂装置。设计了一款基于碟簧与磁流变阻尼器的新型滚轮罐耳缓冲装置,用于对提升容器的横向振动控制。构建了超深矿井提升系统在含有磁流变阻尼悬挂装置后的纵向振动控制方程并进行了数值求解,研究结果表明:磁流变阻尼器悬挂装置能有效减弱提升主绳及提升容器的纵向振动位移及冲击力。构建了超深矿井提升系统在含磁流变阻尼器新型滚轮罐耳装置后的横向振动控制方程并进行了数值求解,研究结果表明:在刚性罐道接头错位的冲击激励下,在磁流变阻尼器滚轮罐耳装置的减振作用下,提升容器及主绳的横向冲击振动位移能够得到有效抑制。提出了一种基于霍夫变换的钢丝绳平面横向振动的检测方法,针对多绳矿井提升系统场景,搭建了平行双目立体视觉检测实验系统,完成了对实验台上多个旋转运动目标位移参数检测的模拟实验。本项目的研究可为深部矿井提升系统的平稳运行提供理论基础和方法支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
爆炸载荷作用下深部矿井围岩中分区破裂机理及控制研究
动载扰动下深部巷道围岩破裂演化及非线性失稳灾变机理
多源激励下超深立井多绳提升绳弦碰撞行为及主动控制研究
车辆半主动悬架系统失稳机理及稳定性控制研究