In this project, a novel technology of traveling-wave thermoacoustic combined cooling and power is presented, which is based on the thermoacoustics and electromechanics theories. This technology is capable of converting external heat to acoustic work, thereby to produce refrigeration and electricity. In the system, an acoustically resonant traveling-wave thermoacoustic heat engine is used to convert heat to acoustic power, which can drive a traveling-wave thermoacoustic refrigerator to produce cooling power and the linear alternator to produce electricity. The linear alternator is applied to provide a proper phase angle of the refrigerator and covert the expansion work of the refrigerator to electric power. Thus, the system can produce both refrigeration and electricity to meet the requirement for multiple energy resources. This technology may have advantages on potential efficiency, reliability and wide cooling temperature, which is believed as a novel combined cooling and power device with high use-value and is suitable for distributed energy application. The main content in this study will consist of three parts: 1) the high efficiency power conversion mechanism of the acoustically resonant traveling-wave thermoacoustic heat engine; 2) the high efficiency coupling mechanism between the traveling-wave thermoacoustic refrigerator and the linear alternator; 3) the high efficiency coupling working rule between heat, acoustic power, refrigeration and electricity conversion. The main purpose of this project is to find a new combined cooling and power technology, which can be used in many energy areas, such as solar energy application, natural gas liquefaction and so on. Undoubtedly, the success of this project will improve the environmental pollution problem and energy shortage problem in China.
本项目基于热声学、电机学等基本原理,研究一种新型的行波热声冷电联产技术的工作机理。该技术能将热能转换成声能、再实现制冷与发电。研究采用声学共振型行波热声发动机实现热声转换、利用行波热声制冷机实现制冷、利用直线发电机一方面提供行波热声制冷机的高效工作所需的相位,另一方面将制冷机出口膨胀功转化成电能。由此,系统可在同一装置上实现冷、电的同时产出,满足多能源场合的需要。该技术具有热源适应性好、潜在效率高、可靠性好、制冷温区宽等优点,是一种适合于分布式能源的、极具实用价值的新型冷电联供技术。项目研究的主要内容包括:(1)声学共振型行波热声发动机高效运行的工作机理及阻抗匹配规律;(2)行波热声制冷机与直线发电机间阻抗耦合规律;(3)整机热-声-冷-电间高效耦合工作机理;本项目研究将探索出一种新型的冷电联产技术,该技术可用于太阳能利用、天然气液化等能源领域,有助于改善我国环境污染问题及能源短缺问题。
项目基于热声学、电机学等基本原理,研究了一种新型的行波热声冷电联产技术的工作机理。该技术能将热能转换成声能、再实现制冷与发电。项目采用声学共振型多级行波热声发动机实现热声转换,再驱动行波热声制冷机实现制冷。直线发电机位于热声制冷机出口,一方面提供行波热声制冷机的高效工作所需的相位,另一方面将制冷机出口膨胀功转化成电能。由此,系统可在同一装置上实现冷、电的同时产出,满足多能源场合的需要。该技术具有热源适应性好、潜在效率高、可靠性好、制冷温区宽等优点,是一种适合于分布式能源的新型冷电联供技术,该技术可用于太阳能发电、天然气液化等能源领域,有助于改善我国环境污染问题及能源短缺问题。在执行期内,项目按照先子系统再整机的思路逐步深入,针对以下三方面内容开展了深入研究:(1) 行波热声制冷机与直线发电机间阻抗耦合规律;(2) 声学共振型多级行波热声发动机高效运行的工作机理及阻抗匹配规律;(3)整机热-声-冷-电间高效耦合工作机理。经过四年的研究,由热声制冷机和直线电机组成的冷电单元实现制冷量503W@110K、制冷相对卡诺效率32.3%、输出电功665W,冷电单元最大㶲效率58.0%(效率均以入口声功计);四级热声发动机最大输出声功12.1kW、最大热声转换效率29.3%;热声发动机驱动冷电单元整体实现了478.3W@110K、输出电功575.1W,整机㶲效率7.9%。研究结果表明,项目提出的冷电联产方案技术上是可行的,未来将进一步提高样机功率、效率等性能,尝试向工程化迈进。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
五轴联动机床几何误差一次装卡测量方法
宽弦高速跨音风扇颤振特性研究
滚动直线导轨副静刚度试验装置设计
新型行波热声转换机理研究
声学双作用行波型热声发动机高效热声转换工作机理研究
普冷温区高效串列热声制冷系统的工作机理研究
完全无运动部件的液氦温区热声制冷技术工作机理及实验研究