The "Chip+Transparent Ceramics Phosphors" white LED device can achieve high efficiency and high reliability, and thus has important applications in the field of high-power white LED lighting. At present, the white sources based on yellow Ce:YAG transparent ceramics phosphors have been developed. Although the high luminous efficiency has been obtained, the color rendering index (CRI) is low (<80) due to the deficient of green and red light in the spectrum of Ce:YAG transparent ceramics phosphors. The spectrum of Ce3+ and Mn2+ co-activated calcium scandium silicate phosphor can cover green, yellow, and red visible region with comparable intensities, and the CRI of its based white LED can be high (over 90), but the preparation of its transparent ceramic phosphors is still blank. Based on the preliminary work, this application intends to study on the Ce3+ and Mn2+ co-activated scandium calcium silicate transparent ceramics phosphors, mastering its preparation method and studying its luminescent properties, especially the energy transfer kinetics of Ce3+ and Mn2+ in the transparent ceramic host, as well as the optimization of spectral distribution and the improvement of luminous efficiency. Finally, a "Chip+Transparent Ceramic Phosphors" type white LED device with high CRI will be achieved. This project can not only provide technical support for the application of transparent ceramics phosphors in the field of white LED, but also can form core techonology of new transparent ceramic phosphor materials with independent intellectual property rights, thus promoting the innovation and development of solid state lighting in our country.
“芯片+荧光透明陶瓷”型白光LED器件可实现高光效和高可靠性,在大功率照明领域具有重要应用。目前,已开发的Ce:YAG黄色荧光透明陶瓷虽可获得高效发光,但其光谱中缺少绿光和红光,导致器件的显色性差(<80)。基于Ce3+/Mn2+能量传递的硅酸钪钙荧光粉可实现绿光、黄光和红光光谱的均衡分布,封装的白光LED器件显色性超过90,但其荧光透明陶瓷的研究在国内外却是空白。本申请拟在前期工作基础上,研制基于Ce3+/Mn2+能量传递的硅酸钪钙荧光透明陶瓷,掌握其制备方法,研究其发光动力学过程,优化光谱分布,提高发光效率,封装高显色“芯片+荧光透明陶瓷”型白光LED器件。本项目不仅能够为荧光透明陶瓷在白光LED领域的应用提供技术支持,而且能够形成具有我国自主知识产权的新型荧光透明陶瓷核心技术,从而促进我国固态照明领域的创新发展。
荧光透明陶瓷转换型白光LED器件可实现高亮度、大功率、高光效和高可靠性照明,具有广阔应用前景,但全色荧光陶瓷缺乏,限制了其 应用进程。本项目采用Na+电荷补偿获得高效CSS:Ce3+绿色荧光玻璃陶瓷,量子效率>90%;通过Ce3+/Mn2+共掺杂,利用它们间的能量传递,获得全光谱CSS:Ce3+, Mn2+荧光陶瓷; 研制出全光谱CASN:Eu2+/CSS:Ce3+复合荧光陶瓷和全光谱CASN:Eu2+/LuAG:Ce3+/YAG:Ce3+ 复合荧光陶瓷,实现器件显色指数>90。发明一种高效、高热稳定的绿色石榴石Lu2SrAl4SiO12 (LSAS):Ce3+荧光材料,内量子效率高达93%,200℃下几乎无猝灭,实现全光谱白光LED显色指数高达97.6,是一种极具应用潜力的荧光陶瓷材料。还研制出系列紫外激发的Ce3+激活的非石榴石荧光材料。本项目为荧光陶瓷在高亮度照明领域的应用提供了材料设计与制备技术的支撑,促进了我国固态照明领域的创新发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
动物响应亚磁场的生化和分子机制
采用黏弹性人工边界时显式算法稳定性条件
下调SNHG16对胃癌细胞HGC-27细胞周期的影响
倒装SRAM 型FPGA 单粒子效应防护设计验证
巴东组泥岩水作用的特征强度及其能量演化规律研究
全光谱高显色性钪硅酸盐LED荧光粉的研究
白光LED用透明玻璃陶瓷研究
大功率白光LED用荧光陶瓷制备及其光谱调制研究
近紫外白光LED用稀土“离子对”掺杂单一基质碱土硅酸盐基白光荧光材料的能量传递与光谱调控研究