Characterization of cell mechanical properties (COCMP) is crucial to biological and medical studies. Existing measurements focus mostly on contact-type single-point methods, which are susceptible to the influence of measurement environment and approach and difficult to meet the need of quantitative and multi-facet comprehensive characterization. To address this issue, this project propose a high-precision quantitative characterization method for non-contact measurement of active cell mechanics based on holographic optical tweezers (HOT) using high-performance phase-only liquid crystal on silicon (LCOS) devices and orbital angular momentum (OAM) of light. By researching the real-time generation algorithm of light field with symmetric and asymmetric structure in HOT, COCMP using multi-point and multi-perspective dynamic pulses, quantitative calibration of optical trapping force, accurate characterization of off-axis OAM (OOAM) and quantitative characterization of optical trapping force and torque of OOAM, this project will establish a novel and reliable characterization method for a comprehensive characterization of linear and nonlinear cell mechanics characteristics in this fields for the first time to our knowledge. The research outcome of this project can provide a convenient and effective new method for the identification of cytoactive states in modern medical health testing instruments, such as large-scale flow cytometries. This method has the potential for a broad range of applications in the fields of biology and medicine as well as characterisation of other micro particles.
测量表征细胞力学特性对于生物和医学领域的研究有重要的意义。现有测量多为接触式单点法,易受测量环境和方式的影响,难以满足全方位、多角度、多状态定量化表征的需求。为了解决这一问题,本项目提出一种基于高性能全相位硅基液晶全息光镊和光轨道角动量的非接触式活性细胞力学特性的高精度定量测量表征方法。通过研究全息光镊的对称和非对称光场实时生成算法、多点多角度动态脉冲下细胞力学测量表征、全息光镊光阱力的定量化标定、离轴光轨道角动量的精确表征、离轴光轨道角动量的光阱力定量化表征等,首次建立一种全新可靠的细胞力学特性全面测量表征手段。项目的研究成果可为现代医疗健康检测仪器,如大型流式细胞仪,提供一种方便有效的个体细胞活性状态鉴别新方法,在生物和医学领域具有广阔的应用前景。
本项目立足于发展细胞力学特性的全方位、多角度、多状态非接触式精确测量的表征方法,研究了基于高性能全相位硅基液晶的高精度全息光镊生成和标定方法,完成了全息光镊系统的设计与实现,开展了离轴数字全息显微的测量方法的理论和实验研究,将光镊系统、倒置显微镜系统与数字全息显微系统结合于一体,构建了非接触式高精度细胞力学特性测量系统,实现了非接触式高精度细胞形变特性微米级空间分布和动态响应的表征。在此基础上,以红细胞变形性、弹性模量、肝星状细胞牵引力为代表,开展了细胞力学特性微米级空间分布测量、流动状态下细胞力学特性在线测量研究、以及多模态力学刺激下细胞力学响应的原位检测。项目基本完成了预期目标,在细胞力学刺激及力学响应原位测量方面形成了一定的研究成果,将为在生物医学检测中细胞力学特性测量的应用奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
低轨卫星通信信道分配策略
内点最大化与冗余点控制的小型无人机遥感图像配准
全息光镊操纵和组装纳米线技术研究
基于全息光镊的光学衍射层析相位成像技术研究
基于PLZT光致形变特性的光控非接触式微镜驱动与控制研究
基于数字微镜阵列的多模光纤全息光镊及其应用研究