As an extremely pressure lubricant, gallium-based liquid metal has excellent thermal conductivity and superhigh critical bonding load. The preliminary study found that liquid metal has poor lubricant performance under a low friction power. When the friction power increased to the interface formed FeGa3 reaction film, the friction reaction film has important significance to analyze the mechanism of liquid metal lubrication. However, the study of liquid metal as a lubricant is not mature, it is urgent to define the basic problems such as the relationship of the lubrication characteristics of liquid metal and service temperature, load and friction pair, the crystal structure and transition mechanism of friction reaction membrane, thus proposed to improve the lubrication effect of liquid metal under a low friction power. Therefore, this project firstly intends to determine the relationship between liquid metal lubrication characteristics, service temperature and load by friction experiment, and based on finite element simulation to establish the lubrication model. Secondly, FEG-SEM/FIB and TEM methods were used in order to explore the structure and transition characteristics of the friction reaction film. Nano-liquid metal as an additive combined with other lubricant materials to optimize the performance of liquid metal-based composite lubricant. Then, the friction properties of Fe-Ga compounds and films synthesized by high-temperature solid-state reaction were studied. Finally, it is revealed the lubrication mechanism of liquid metal and realized the control of the lubricating performance of liquid metal-based lubricant.
镓基液态金属作为极压润滑剂,拥有优异的导热性能和超高胶合临界载荷。前期研究发现,液态金属在低摩擦功下的润滑性能较差,当摩擦功增幅至界面生成FeGa3反应膜后,摩擦系数和磨损量发生大幅下降,可见摩擦反应膜对解析液态金属润滑的机制具有重要意义。但液态金属作为润滑剂的研究尚不成熟,急需明确其润滑特征与服役温度、载荷和摩擦副的配合关系,及摩擦反应膜的晶体结构和转变机制等基础问题,从而提出改良低摩擦功下液态金属润滑效果的技术。为此,本项目拟通过摩擦实验确定液态金属润滑特性与服役温度、载荷关系,结合有限元模拟建立润滑模型;利用FEG-SEM/FIB和TEM等方法探究摩擦反应膜的结构和转变特征;再次将纳米化的液态金属作为添加剂与其他润滑材料复合,优化液态金属基复合润滑剂性能;然后研究通过高温固相反应制备的Fe-Ga化合物和薄膜的摩擦性能;最终揭示液态金属的润滑机理,实现液态金属基润滑剂润滑性能的调控。
镓基液态金属作为极压润滑剂,拥有优异的导热性能和超高的胶合临界载荷。前期研究发现,镓基液态金属在低摩擦功下的润滑性能较差,当摩擦功增幅至界面生成FeGa3反应膜后,摩擦系数和磨损量发生大幅下降,可见摩擦反应膜对解析镓基液态金属的润滑机制具有重要意义。但镓基液态金属作为润滑剂的研究尚不成熟,亟需明确其润滑特征与服役温度、载荷和摩擦副的配合关系,及摩擦反应膜的晶体结构和转变机制等基础问题,从而提出改良低摩擦功下镓基液态金属润滑效果的技术。为此,本项目通过摩擦磨损实验确定了镓基液态金属润滑特性与服役温度、载荷的关系,并结合有限元模拟建立了润滑模型;探究了Fe-Ga摩擦反应膜的结构和转变特征;测定了通过高温固相反应制备的Fe-Ga化合物的摩擦学性能;最后将纳米化的镓基液态金属与润滑脂复合,优化了镓基液态金属基复合润滑剂的性能;本项目揭示了镓基液态金属的润滑机理,实现了镓基液态金属基润滑剂润滑性能的调控。在本项目执行过程中,申请人共发表论文9篇,其中以第一作者发表论文2篇,通讯作者1篇,在国内会议报告2次。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
基于细粒度词表示的命名实体识别研究
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
空气电晕放电发展过程的特征发射光谱分析与放电识别
含水溶性核-壳型纳米极压润滑添加剂的冷轧液的研制及其机理研究
液态金属中电弧行为特性和侵蚀机理及短路限流应用的研究
梯度微纳米金属极薄带剪/压复合变形下的强韧机理及尺寸效应
聚变堆包层液态金属锂铅传热特性研究