Due to the development of big data and deep learning, face recognition technology has been well developed and has reached commercial requirements in some areas. However, there are still some challenging problems in face analysis, such as multiple face attribute analysis Co-learning based on still of images. In the analysis of face attributes in non-restricted environment, age, gender and race are the most common research subjects. At present, the analysis of face attributes has achieved good performance in some characteristic scenarios, but there are still a series of difficult problems needed to be solved. For example, there are large differences in the categories of attributes (Fine-grained age estimation-101, Gender-2, Ethnicity-3), resulting in inconsistent convergence of tasks of different tasks in multitasking training, which may easily result in over-fitting or under-fitting. These problem may lead to effect the information change and transfer learning In order to solve the above difficulties, this research focuses on the research of collaborative learning method based on differentiated diversity face attributes. Under the guidance of collaborative learning framework, a robust multi-task face attribute learning model is constructed by studying the multi-task sample imbalance learning, multi-attribute weight adaptive learning and multi-tasking network architecture design to enhance the recognition performance of face attributes.
由于大数据和深度学习发展,人脸识别技术得到飞跃发展,在某些领域已达到商用要求。然而人脸分析中还存在其他问题,如多元人脸属性协同学习。目前人脸属性分析在某些场景下已经取得了较好的性能,却仍旧存在一系列待解决的难点问题。比如多元属性间类别差异大(精细化的年龄估计-101类,性别-2类,种族-3类)以及各个任务识别难度不一,造成多任务训练时不同属性分支收敛性不一致,容易造成某些任务过拟合或者训练不充分,同时也影响各个任务之间的信息交换与迁移。本课题针对上述难点问题,展开基于多元人脸属性协同学习方法的研究。在多任务学习框架指导下,通过构建大规模多元人脸属性数据库,研究多元人脸属性自适应协同学习、非均衡多任务协同学习、以及异源数据联合协同学习,构建稳健的多元人脸属性学习模型,提升人脸属性分析性能。
本项目在人脸属性方面,如年龄、性别、种族、人脸防伪等属性信息分析方面进行关键技术攻关。从网络结构自动搜索、有效视觉特征学习、长尾分布的鲁棒特征学习进行系统研究,提出了静-动中心差分网络、跨批次难样本挖掘方法;从多模态融合和转换进行研究,提出了多模态网络中间层融合策略、自适应模态融合、对抗跨模态转换方法,极大提升结构化任务性能;在数据库构建方面,提出了多模态跨种族人脸防伪、高仿人脸防伪数据库,推动人脸防伪发展。在此基础上,本项目研发了一套人脸结构化分析设备原型系统。..依托本项目已发表专著1本,SCI/EI论文29篇,其中包括IEEE Trans.和CCF A类会议和期刊论文21篇(如TPAMI,IJCV,TIP,CVPR,AAAI等)、专著1本、专利5项,获得中国图象图形学会自然科学奖二等奖(本项目负责人为第一完成人)、北京地区广受关注学术成果优秀论文、国际和国内竞赛冠亚军5项。在人才培养方面,累积培养博士生3名,硕士生2名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
多源数据驱动CNN-GRU模型的公交客流量分类预测
基于LBS的移动定向优惠券策略
肝癌多学科协作组在本科生临床见习阶段的教学作用及问题
基于相似日理论和CSO-WGPR的短期光伏发电功率预测
多模态Web人脸属性学习方法及应用研究
跨模态人脸特征学习方法及其应用研究
面向血缘关系认证的人脸特征学习方法研究
语义跨库的人脸图像多属性联合估计研究