The time-dependent deformation of deep buried rock is an important issue in the study of the stability of surrounding rock in the exploitation of deep resources. The temperature and water environment are the catalysts of rock rheology. This project takes "the creep of rock as the macroscopic representation of the weakening of physical and mechanical properties and the continuous evolution of micro-cracks or micro-damages" as the academic thought, taking "the water and temperature environment result in the temporal and spatial evolution of rock mechanical properties then leading to the mechanical response after loading (deformation, damage, rupture)" as the theoretical foundation. At first, this project will design the devices for testing the rock mechanical parameters and the creep behavior under the conditions of temperature and water. Then, it will study the creep behavior of deep rock under different water and temperature environment and stress combination conditions, analyzing the evolution of thermal conductivity and permeability, obtaining the fracture parameters of rock under different environments. After that, this project will establish the rheological fracture criteria, constitutive equations and mechanical model for the deep buried rock under different water and temperature environments, and then implement a numerical model for such problem based on the micromechanics and statistical methods. In order to improve the efficiency of parallel computing, we will proposed a highly efficient and scalable numerical algorithm suitable for the computing of time-dependent deformation of rock, and study how to achieve real-time display and high-quality rendering of large-scale and complex rock engineering models. By the experimental and numerical study on the evolution of stress field, displacement field and damage during the process of time-dependent deformation of rock, it will enhance our knowledge about the rheological failure in deep buried rock.
岩石的时效变形是深部资源开采时围岩稳定性研究的重要课题,普遍存在的水和温度环境是深部岩石流变的催化剂。本项目以“岩石的蠕变是其物理力学性能弱化、微破裂或微损伤不断演化的宏观表象”为学术思想,以“水和温度环境造成岩石力学性能的时空演化,及加载后的力学响应(变形、损伤、破裂)”为思路,首先,设计温度与水作用下岩石力学参数和蠕变研究的环境试验装置;其次,研究不同水和温度环境与应力组合条件下的深部岩石蠕变破裂特征,开展不同环境下岩石断裂性能的测试,建立温度与水作用下深部岩石流变断裂准则、本构方程及力学模型;最后,研究基于细观力学和统计学方法的深部岩石蠕变破裂数值模型,提出适合岩石刚度差别显著以及流变分析的高效可扩展并行数值算法,实现大规模复杂模型的实时显示和高质量渲染。通过对流变失稳破裂过程中应力场、位移场和损伤演化规律的实验和数值研究,进一步揭示深部岩石流变破裂规律。
岩石的时效变形是深部资源开采时围岩稳定性研究的重要课题,普遍存在的水等环境是深部岩石流变的催化剂。本项目设计了水等环境下岩石力学参数和蠕变研究的环境试验装置,提出了荷载和水共同作用下的断裂韧度、强度和蠕变等力学特性的试验方法。通过研究不同环境与应力组合条件下的岩石蠕变破裂特征,开展不同环境下岩石断裂性能的测试,建立了岩石蠕变破坏的经验关系式。通过声发射、核磁共振等方法,获得了水环境下岩石强度和蠕变变化规律。基于岩石破裂过程的力学本质,建立了深部岩石蠕变断裂的力学模型和数值计算模型。基于深埋隧洞中滞后岩爆与岩石蠕变破坏的内在联系,构建了深部岩体微破裂监测的微震监测系统,提出了基于小波阈值和自编码的微震信号降噪方法,建立了通道和空间双重注意力机制的微震分类智能算法,构建了“提取器-编码器-生成器”微震到时拾取模型,实现了端到端的到时检测,为工程中滞后岩爆等灾害提供了技术支撑。本项目在国内外期刊发表论文23篇,其中SCI收录20篇,EI收录2篇,北大中文核心1篇。获批软著1项,授权发明专利3项。培养博士生3人,硕士生6人。获得省部级一等奖3项,荣获绿色矿山青年科学技术奖等。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
中国参与全球价值链的环境效应分析
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
钢筋混凝土带翼缘剪力墙破坏机理研究
深部高温高应力岩石动态断裂特征及微观破裂机理
深部隧道碎裂围岩大变形演化特征及锚喷支护作用机理研究
渗流-应力耦合作用下深部岩石工程围岩的时效变形与细观失稳机理研究
深部巷道围岩变形、破坏全过程及其稳定控制机理