复Finsler流形间调和映射理论的若干问题研究

基本信息
批准号:11401369
项目类别:青年科学基金项目
资助金额:18.00
负责人:肖金秀
学科分类:
依托单位:上海工程技术大学
批准年份:2014
结题年份:2017
起止时间:2015-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:何冰洁,蔡新中,岳玉静
关键词:
Laplace算子ChernFinsler联络复Finsler流形复Berwald流形
结项摘要

This project first studies the variation of partial energy for the mapping between strongly pseudconvex complex Finsler manifolds, based on the harmonic mapping between pseudconvex complex Finsler manifolds defined as the critical point of the partial energy , so the equation is obtained,the main result of this aspect is that the mapping between strongly pseudconvex complex Finsler manifols with zero second fundamental form is no longer harmonic mapping, and the holomorphic mappings are not harmonic mapping, further studies the differential geometric properties of the harmonic complex submanifolds, and gets some basic equations on strongly complex Finsler submanifolds. Secondly, according to the volume of strongly complex Finsler manifold , we calculate the corresponding divergence formula, and introduce some concepts such as complex Laplacian operator on complex Finsler manifold, on studying Bochner technique on the complex Finsler manifold , we get are the Schwarz lemma, Liouville theorem and rigidity theorem on complex Finsler manifold, these results are generalizations of the well know results on Kaehler manifold or Hermitian manifold which were obtained by Yau and Chen Zhihua.

本项目首先研究了强拟凸复Finsler流形间映射的部分能量的变分,根据强拟凸复Finsler流形间的调和映射为能量积分的临界点,给出了调和映射所满足的方程,主要得到了复Finsler流形间第二基本形式为零的映射不再是调和映射,且全纯映射也不是调和映射,并进一步研究了调和复子流形的微分几何性质,得到调和复Finsler子流形上的一些基本方程。其次,根据复Finsler流形上的体积测度,计算出了相应的散度公式,并引入复Laplacian算子等概念,研究了复Finsler流形上的Bochner技巧,主要得到kaehler-Finsler流形上的Schwarz引理、Liouville定理及刚性定理,这些结果推广了丘成桐、陈志华等前辈在Kaehler流形和Hermitian流形上得到的相应结果。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

Banach空间集合覆盖数估计的新方法

Banach空间集合覆盖数估计的新方法

DOI:doi:10.6043/j.issn.0438-0479.2016.01.018
发表时间:2016
2

Ordinal space projection learning via neighbor classes representation

Ordinal space projection learning via neighbor classes representation

DOI:https://doi.org/10.1016/j.cviu.2018.06.003
发表时间:2018
3

Ricci 流与超Ricci 流上的Li-Yau-Hamilton Harnack 不等式

Ricci 流与超Ricci 流上的Li-Yau-Hamilton Harnack 不等式

DOI:doi: 10.1360/N012019-00044
发表时间:2019
4

基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料

基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料

DOI:
发表时间:2021
5

Image super-resolution based on sparse coding with multi-class dictionaries

Image super-resolution based on sparse coding with multi-class dictionaries

DOI:doi: 10.31577/cai 2019 6 1301
发表时间:2019

肖金秀的其他基金

相似国自然基金

1

复Finsler流形上的调和积分及调和映射

批准号:10601040
批准年份:2006
负责人:钟春平
学科分类:A0202
资助金额:14.00
项目类别:青年科学基金项目
2

关于 Finsler 流形上调和映射与 Laplacian 的若干问题研究

批准号:11471246
批准年份:2014
负责人:贺群
学科分类:A0108
资助金额:66.00
项目类别:面上项目
3

黎曼流形间的双调和映射的若干问题研究

批准号:11861022
批准年份:2018
负责人:王泽平
学科分类:A0108
资助金额:38.00
项目类别:地区科学基金项目
4

调和映射理论中的若干问题

批准号:11401184
批准年份:2014
负责人:陈少林
学科分类:A0201
资助金额:23.00
项目类别:青年科学基金项目