In current research and practice, the data to be handled becomes greater and greater in size, and more and more complex in structure. To utilize the human's ability to improve the visualization efficiency on these data sets, navigation visualization allows scientists to wander in the data space, emphasizing on local interesting contents. Thus, the rendering complexity for visualization can be reduced greatly, and scientists can watch and analyze their interesting contents soon. In this project, we focused on studying the methods for fast extracting the data of interesting contents from a large and complex data set and rendering these data in high efficiency when the scientists wander in the data space. With the newest development for navigation visualization in the world, we developed many advanced methods that can quickly locate the scientists in the data space, take advantages of some coherent features with the viewpoint moving to grealy reduce the rendering complexity, and fast obtain the arbitrary selection of interesting contents and render them quickly. These methods greatly improve the rendering efficiency in navigation visualization.
针对驾驭式可视化连续观察局部数组的特点,研究其操作过程中所考察内容不断变化时的成象技术,以及人机交互反应的技术,主要探索数据场的组织结构和表达方式的优化,以有利于快速查找各种信息和利用已较成熟的技术(特别是硬件技术)加速成象。同时,研究数据内容与图象关联的新机制,减少人机交互反应的复杂度,以便用户快速得到所需的可视图。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
用于ICF超快成象诊断的扫描式分幅技术研究
井间成象技术的研究
高炉计算机断层成象技术的成象算法基础研究
驾驭混沌与智能信息处理