With the continuous improvement of hypersonic vehicle performance, its aerodynamic layout and shape are becoming more and more complex. Refined thermal protection design has become the key direction of aircraft development. How to obtain the aerodynamic and thermal information of the aircraft efficiently, comprehensively and accurately has become the first problem to be solved in the wind tunnel test. Phosphor thermography technology as a non-contact optical flow measurement method, has the advantages of non-contact, high resolution, wide coverage, without destroying the model shape, high efficiency, both flow visualization and other advantages, is the advanced test technology at home and abroad in recent years to develop..However, for complex shape, the technology still has large position error and limited measurement accuracy , low efficiency, high heat flow measurement problems, therefore, this project is to solve these problems, combined with stereo vision technology, the development of 3D point cloud and local interest in phosphor thermographic technique based on regional implementation of aerodynamic heating the test data of high accuracy, high resolution, high efficiency, full surface acquisition, and improve fine heat wind tunnel measurement capabilities for hypersonic vehicle, then the local aerodynamic thermal protection fine design provides a more comprehensive and accurate data support.
随着高超声速飞行器性能的不断提高,其气动布局、外形日趋复杂,精细化热防护设计已成为飞行器研制的重点方向。如何高效、全面、准确地获取飞行器气动热信息成为风洞试验中首要解决的问题。磷光热图技术作为一种非接触光学热流测量手段,具有非接触、高分辨率、广覆盖、不破坏模型外形、效率高,兼具流场显示等优势,是国内外近年来大力发展的先进试验技术。.然而,对于复杂外形飞行器,目前该技术仍存在位置误差较大、测量精度受限、效率低、局部高热流区测量困难等问题,因此,本项目针对这些问题,结合立体视觉技术,开展基于三维点云和局部感兴趣区域的磷光热图技术研究,实现气动热试验数据的高精度、高分辨率、高效率、全表面获取,提高风洞精细化热流测量能力,为高超声速飞行器整机、局部气动热防护精细化设计提供高精度热环境数据。
高超声速飞行器在军事上具有很重要的意义。随着高超声速飞行器性能的不断提高,其气动布局、外形日趋复杂,精细化热防护设计已成为飞行器研制的重点方向。如何高效、全面、准确地获取飞行器气动热信息成为风洞试验中首要解决的问题。.针对此问题,本课题开展了三维全表面磷光热图技术研究,研究内容主要包括多目视觉光路布局设计、模型三维重建及映射方法研究,以及复杂流动区域测量方法研究等,通过典型外形风洞试验验证,获得了模型三维全表面热流数据和局部复杂区域热流数据。.应用该技术能够通过单次试验获得模型三维全表面热流数据,在减少实验次数的同时,可有效缩短试验周期,提高试验效率2~3倍,热流测量精度从10%以上提升至6%,已成功用于多项飞行器风洞试验任务,能够为高超声速飞行器整机、局部气动热防护精细化设计提供高精度热环境数据。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于SSVEP 直接脑控机器人方向和速度研究
中国参与全球价值链的环境效应分析
气载放射性碘采样测量方法研究进展
高超声速摩阻分布测量实验技术研究
高超声速飞行器受热面高温变形光学测量技术研究和测量系统研制
面向全飞行包线的高超声速飞行器复杂动态建模及主动鲁棒控制
高超声速飞行器变体机翼技术基础