Laser three-dimensional imaging system has attracted extensive interest because it can obtain a large amount of real-time multi-dimensional target information (range, intensity, cross section parameters, etc.) with high angle resolution and range resolution. Meanwhile, it also has all-day working ability, and it is not affected by external illumination conditions or the contrast characteristics between the target and background. Benefits from these remarkable multi-advantages, it has proven to be a vital technology for a variety of applications including remote sensing, target recognition, terrain mapping, machine vision, forestry, urban three-dimensional reconstruction, intelligent transportation and other fields. With the continuous extension and expansion of the application field, a laser three-dimensional imaging system with higher performance are demanded strictly, especially the performance requirements of large field of view, small volume, high resolution and real-time imaging. However, the traditional laser 3D imaging systems are difficult to meet the aforementioned requirements at the same time. To solve this issue, a hybrid bionic imaging method based on the combination of compound eye and human eye for array laser three-dimensional imaging system is proposed in this project. The proposed method combines the advantages of large field of view and compact structure of compound eye and the characteristics of variable resolution imaging of human retinal cells. Through theoretical analysis, simulation design, structure design, system construction, etc., an array laser three-dimensional imaging system inspired by compound bionic is developed, which is compacted and has a large field of view with high resolution and real-time performance. The project not only provides theoretical and experimental basis for further exploration of compound bionic imaging, but also lays a good technical foundation in the research of laser three-dimensional imaging with high performance. Therefore, the project has both significant research meaning and practical value.
激光三维成像系统由于能够以极高角分辨率和距离分辨率获得大量且实时的多维被测目标信息,同时具有全天时工作能力、不受外界光照条件和目标背景反差特性影响的优点,广泛应用于遥感、目标识别、地形测绘、机器视觉、林业、城市三维重建、智能交通等领域。随着激光三维成像系统应用领域的不断延伸及扩展,人们对其性能的需求也在不断提高,尤其是在大视场、小体积、高分辨率、实时性方面。然而传统激光三维成像系统难以同时满足以上要求。本项目结合复眼大视场和结构紧凑的成像优势以及人眼视网膜变分辨率成像特点,提出一种基于复眼和人眼结合的复合仿生面阵激光三维成像方法,通过理论分析,仿真设计、结构设计、系统搭建等环节,研制具有复合仿生成像机理的面阵激光三维成像系统。通过本项目的研究,不仅为进一步探索复合仿生成像提供理论基础与实验依据,更为高性能的激光三维成像在基础学科的研究奠定良好的技术基础,具有重要的研究意义与实用价值。
激光三维成像系统能够获得目标距离信息,具有全天时工作能力、不受外界光照条件、不受目标背景反差特性影响的优点,广泛应用于遥感、目标识别、地形测绘、机器视觉、林业、城市三维重建、智能交通等领域。随着激光三维成像系统应用领域的不断延伸及扩展,人们对其性能的需求也在不断提高,尤其是在大视场、小体积、高分辨率、实时性成像方面。然而传统激光三维成像系统难以同时满足以上要求。本项目结合复眼大视场和结构紧凑的成像优势以及人眼视网膜变分辨率成像特点,提出一种基于复眼和人眼结合的复合仿生面阵激光三维成像方法,重点研究复眼和人眼结合的复合仿生激光三维成像理论、非均匀曲面透镜阵列设计、多通道高速并行信号处理电路以及距离像和强度像融合等关键技术。通过理论分析,仿真设计、结构设计、系统搭建等环节,研制具有复合仿生成像机理的面阵激光三维成像系统,该系统探测距离106m,成像全视场28°,分辨率为8环X8像素/环,测距精度0.07m,成像速率20fps。通过本项目的研究可实现紧凑型大视场同时兼顾高分辨以及实时性的激光三维成像,不仅为进一步探索复合仿生成像提供理论基础与实验依据,更为高性能的激光三维成像在基础学科的研究奠定良好的技术基础,具有重要的研究意义与实用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
基于SSVEP 直接脑控机器人方向和速度研究
感应不均匀介质的琼斯矩阵
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
基于混合优化方法的大口径主镜设计
基于双面阵探测器关联的无扫描增益调制激光三维成像的研究
基于稀疏阵的相控阵三维成像声纳系统阵元优化及波束形成算法研究
近场稀疏MIMO面阵三维毫米波成像技术研究
高速俯冲前视线阵SAR三维高分辨成像技术研究