“Multi-dimension”, including multi-level modulation formats and multi-dimensional multiplexing schemes, is one of the essential characteristics of future high-speed, high-capacity and long-distance optical fiber transmission systems. Therefore, it would be valuable, in both scientific and social point of view, to investigate related key technologies to enhance the information capacity and to develop next generation optical transmission systems. In this proposal, taking "inter-dimension" and "intra-dimension" as key issues and the mode/polarization multiplexed and higher-order modulated signal transmission as main goals, we plan to investigate novel high spectral-efficient multiplexing technologies, mechanisms of link impairments and performance monitoring schemes for multi-dimensional transmission systems, as well as compensation and optimization of multi-dimensional signals. Final goals of the proposal include but not limited to the following: (1) establishing a simulation and experiment platform for mode and polarization multiplexed transmission systems; (2) establishing a systmatic theory about link impairments in multi-dimensional transmission systems, especially those "inter-dimensional" related ones; (3) demonstrating effective performance monitoring of some key parameters in the multi-dimensional transmission systems; (4) proposing efficient compensation schemes with low complexity for nonlinear impairments along the link; (5) obtaining low-noise, high-gain and dimension-independent amplification techniques for multi-dimensional transmission systems.
"多维"(包括调制格式和复用方式)是未来高速、大容量、长距离光纤传输系统必备特征之一。研究新型多维传输关键技术对提升信息容量和发展下一代光纤通信系统具有重要科学和社会意义。本项目围绕维度之间(Inter-Dimension)和维度内部(Intra-Dimension)所涉及的关键科学问题,以模式/偏振复用与高阶调制信号传输为主要对象,重点研究新型高频谱效率多维复用方式,多维传输系统链路损伤机制和信号性能监控技术,以及多维传输信号的补偿与优化技术等。主要目标包括:(1)搭建完整的模式与偏振复用传输系统仿真与实验平台;(2)形成系统的有关多维传输系统链路损伤机制(特别针对“维度相关”损伤)理论体系;(3)实现多维传输系统中不同关键性能参数的有效(参量分离)监控手段;(4)针对链路非线性损伤提出并完善低复杂度高效补偿方案;(5)实现多维传输系统中维度增益平坦、低噪和高增益的新型放大技术。
光纤通信系统从传统的波分复用已经发展到以多维(波长、偏振、模式等)为关键特征的阶段,维度间以及维度内部的信号传输方式及相互作用机制成为制约系统发展的瓶颈。本项目针对新型多维传输,从多维信号产生及复用机理、关键功能单元、系统传输和系统优化四个层面开展研究工作,实现新型多维复用系统的构建和关键技术的突破,以支撑未来超大容量多维光通信系统发展。同时探索多维模拟信号的产生及调控,为多维模拟信号的传输应用奠定基础。项目在多偏振态信号调控(四个偏振态)、多模放大及传输(6芯3模共18个空间信道)、多维模拟信号生成及应用(少模光纤微波光子应用)等研究方向形成特色和影响。.项目执行期间共发表SCI论文109篇,其中50余篇影响因子3.0以上(多项研究成果发表于国际顶尖光学期刊,包括Nature Photonics、Light:Science & Applications、Nature Communications等),包括6篇国际期刊特邀综述论文。发表国际会议25篇,其中三大顶级会议(OFC/ECOC/ CLEO)论文15篇,国际会议特邀报告20余次。申请发明专利17项,其中14项获得授权。主办2次国际学术会议,国际学术交流超过20人次。.项目负责人先后获得国家杰出青年资助,入选教育部长江学者特聘教授、国家万人计划创新领军人才和美国光学学会会士。团队2名年轻学者入选省部级人才计划。培养研究生30余人,其中一名博士获得IEEE光子学会Graduate Fellowship。.本项目的执行为后续多维信号调控及传输研究奠定良好的基础,符合国家十三五以及未来在宽带网和光电子方向的重点研究布局,具有积极的科学意义和社会价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于多模态信息特征融合的犯罪预测算法研究
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
多空间交互协同过滤推荐
多源数据驱动CNN-GRU模型的公交客流量分类预测
无线信息与能量协同传输理论与关键技术研究
物联实时多媒体网络信息流传输关键技术研究
基于天基链路的海洋传感信息传输关键技术研究
信息物理融合系统中可预测的实时传输关键技术研究