Phase change material (PCM) is the key factor for the development of energy storage technology. PCM play the crucial role in exploring new energy and improving energy utilization. As the existing porous support materials have low energy storage density and low thermal conductivity due to the uneven size of the pore size and the poor order of the channel, this project aims to construct a novel and hierarchical CNTs@MOFs support material which can provide continuous phonon transmission channel and increase the mean free path of phonon transmission. And, a form-stable composite PCM based on three-dimensional network architecture with excellent thermal storage and heat conduction performance has been developed followed by the incorporation of pure PCM. The porous shell of MOF sensure the high loading capacity of PCM, and CNTs provide the continuous phonon transmission channels. The close contact between the MOFs shell and the CNTs could reduce the interfacial thermal resistance between the support materials and the PCM. The three-dimensional and interpenetrating network structures not only promote the uniform dispersion of the CNTs but also effectively enhance the recycling performance of the composite PCM. Also, the relationship between the component, structure and performance of the composite PCM was analyzed to reveal the synergistic mechanism of energy storage and conduction function, which could pave a way for the construction of novel form-stable composite PCM with high energy storage density, good thermal conductivity, strong load capacity and excellent cycle stability.
先进的相变储能材料是推动储能技术发展的核心和关键,在促进新能源开发和提高能源利用率中起着至关重要的作用。针对现有多孔载体因孔径尺寸不均一、孔道有序性差导致的相变储能密度小、热导率低等问题,本项目以构建既能提供连续声子传输通道又能增加声子传输平均自由程的CNTs@MOFs多级结构载体材料为出发点,开发一类兼具优异热存储与热传导性能的三维网络型定形复合相变材料。MOFs多孔基材壳层保证了相变芯材的高效固载,CNTs提供了连续声子传输通道,MOFs壳层与CNTs的紧密接触降低了载体材料与相变芯材间界面热阻,三维网络互穿结构在促使CNTs宏观均匀分散的同时有效提升了复合相变材料的循环使用性能。探索该类材料的组成、结构与性能的构效关系并揭示储能与传导功能的协同机制,为构建兼具大储能密度、高热导率、强固载能力与高循环稳定性的新型定形复合相变材料提供理论指导。
本项目针对现有多孔载体因孔径尺寸不均一、孔道有序性差导致的相变储能密度小、热导率低等问题,构建了既能提供连续声子传输通道又能增加声子传输平均自由程的多级结构载体材料,设计和制备了SA/CNT@Cr-MIL-101-NH2、PEG/GO-co-Bdye、SA/rGO@CNT、SA/rGO@CuS、PEG2000/rGO@Ag等多种三维网络型定形相变材料。掌握了多孔基材、传热通道与相变芯材的匹配构筑原则,揭示载体与相变芯材的匹配规律并实现了芯材固载的最大化,考评了定形复合相变材料蓄传热综合性能与循环使用稳定性,明晰了复合相变材料中芯材蓄放热和传热介质导热的协同作用原理,进而实现了兼具高储能密度、高热导率、强固载能力与高循环稳定性的新型定形复合相变材料的可控制备。所开发的SA/CNT@Cr-MIL-101-NH2和PEG/GO-co-Bdye复合相变材料的热导率分别比相变芯材的热导率提高了96.2%和98.02%。所取得的成果,目前在Chemical Engineering Journal、Solar Energy Materials and Solar Cells、Composites Part B、工程科学学报、实验技术与管理和实验室研究与探索等期刊发表高水平论文13篇,其中第一标注4篇,第二标注6篇;围绕高储能、高导热、自定形等优势兼容的定形复合相变材料合成制备与性能调控申请国家发明专利2项,其中1项已获授权;在本项目的研究过程中,培养青年教师骨干2名,博士生2名,硕士生2名,项目执行期间项目负责人晋升为高级工程师,一名青年教师晋升为副教授。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
跨社交网络用户对齐技术综述
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
基于二维材料的自旋-轨道矩研究进展
导热增强型复合相变材料的影响因素及传热机理研究
相变储能微管自限域结构构筑与性能研究
高导热三维石墨烯作为相变储能材料载体的协同传热储热机理研究
高导热多孔陶瓷基相变材料的界面微观相变过程非稳态传热及高密度储能机理研究