The project mainly focuses on integrable discretizations of the Camassa-Holm type equations and their short-wave limits. The models that we will study mainly include the Camassa-Holm equation, the Degasperis-Procesi equation, the Hunter-Saxton equation, the Vakhnenko equation, some multi-component Camassa-Holm type equations and so on. We will apply the following methods to construct their integrable discretizations: firstly, based on the Lax pairs of the continuous Camassa-Holm type equations and their short-wave limits, we seek the integrable discretizations with equal step length using the algebraization of the difference operator; secondly, based on the integrable discretizations of the classical solition equations related to the continuous Camassa-Holm type equations and their short-wave limits through the reciprocal transformations, we present the integrable discretizations of them by the discrete reciprocal transformations; thirdly, based on the integrable discretizations of the classical solition equations which are the dual versions of the Camassa-Holm type equations,we propose the integrable discretizations of them through the discrete generalization of the tri-Hamiltonian duality method.
本项目主要研究Camassa-Holm型方程及其短波极限方程的可积离散。研究的模型主要包括Camassa-Holm方程、Degasperis-Procesi方程、Hunter-Saxton方程、Vakhnenko方程及多分量Camassa-Holm型方程等。我们主要采用以下手段可积离散:一是从连续Camassa-Holm型方程及其短波极限方程的Lax对出发,采用差分算子代数化离散,寻找它们的等步长的可积离散格式;二是从与连续Camassa-Holm型方程及其短波极限方程通过reciprocal变换联系的经典孤子方程的可积离散格式出发,利用半离散reciprocal变换建立它们的可积离散格式;三是从连续Camassa-Holm型方程的对偶方程的可积离散格式出发,经三哈密顿对偶方法的离散推广推导它们的可积离散格式。
本项目主要研究了Camassa-Holm型方程及其短波极限方程的可积性质和孤子解。一方面通过对已有的Camassa-Holm型方程的Lax对空间部分做矩阵延拓得到新的多分量Lax对及对应的多分量Camassa-Holm型方程,进而研究这些多分量方程的可积性质、约化和对偶方程。另一方面通过reciprocal transformation和Darboux transformation提出了求某些 Camassa-Holm型方程及其短波极限方程孤子解的简单方法,并通过reciprocal transformation寻找这些Camassa-Holm型方程的可积离散。
{{i.achievement_title}}
数据更新时间:2023-05-31
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
基于MCPF算法的列车组合定位应用研究
基于腔内级联变频的0.63μm波段多波长激光器
二叠纪末生物大灭绝后Skolithos遗迹化石的古环境意义:以豫西和尚沟组为例
汽车侧倾运动安全主动悬架LQG控制器设计方法
非线性离散可积方程与离散Painlevé方程族的连续极限理论
离散可积系统的连续极限理论,孤子的相互作用与离散的矩阵Painleve方程
半离散hungry型可积方程的非等谱推广及其分子解
高维和离散非线性方程可积性研究