In the past decade, the relativistic spin-orbit interaction has played the central role in development of condensed matter physics, leading to discoveries of innovative topological phases of matters. Thanks to its spin-orbit locking nature, the interaction transfers a quantal phase encoded in spin operator into a wavefunction in the coordinate space, enabling rich quantum topological phenomena. Due to its relativistic origin, however, the interaction can be greater only in those materials which comprise of heavy atoms. In fact, most topological materials discovered during last 10 years are comprised of elements in 4d-, 5d-, 5p- and 6p-blocks of the periodic table. Since these elements are rare in nature, the “usage” of the relativistic spin-orbit interaction imposes a strong restriction of quantum topological material design. .Meanwhile, spin-orbit locking itself is ubiquitous in nature. One can even find it in the Maxwell equation for magnetic media. Namely, since the Maxwell equation has an inner product between the spatial gradient and magnetization (spin) vector in its expression, a wavefunction which describes spatial propagation of collective magnetic excitations, i.e. spin waves or magnons, acquires a quantal phase from the magnetization vector. The spin-orbit locking can be also dynamically generated by the spontaneous symmetry breaking due to quantum fluctuations or electron-electron interaction effect. In fact, a competition between kinetic energy and electron-electron correlation often endows correlated electron systems with strong ferromagnetic fluctuation, leading to spin-triplet order, i.e. dynamical formation of spin-orbit locking. From these two perspectives, this project primarily aims at the following very important issues in this exciting field; we shall predict novel topological spin waves (magnons) in spin-orbit coupled materials and further discover intriguing topological quantum magnets with dynamically-generated spin-orbit locking. Theoretical discovery of these topological magnets opens up a new research paradigm in search for topological phases of matters. The present project shall pave the solid path toward future experimental realizations of exotic topological phases in magnets and strongly correlated electron systems.
自旋轨道锁定的相互作用本身在自然界中又是无所不在的,它甚至可以在磁性介质中的麦克斯韦方程中被找到。也就是说,因为麦克斯韦方程的表达式中包含空间梯度和磁化(自旋)矢量的内积, 描述磁性集体激发(即自旋波或磁振子)空间传播的波函数可以很轻易地获得来自磁化矢量的量子相位。自旋轨道锁定也可以由自发性对称破缺动态地生成,这来源于量子涨落或电子-电子相互作用的效应。事实上,动能和电子-电子相互关联能的竞争赋予了关联电子系统铁磁性的涨落,导致了自旋三态有序的出现,即自旋轨道锁定的动态构成。从以上这两个远景来看,这个项目主要是着眼于这个令人兴奋的领域中的以下问题:我们将要预言自旋轨道耦合材料中的新奇拓扑自旋波,进一步发现令人兴奋的拓扑量子磁体,其具有动态生成的自旋轨道锁定。拓扑磁振子和拓扑量子磁体的理论发现为拓扑态量子物质的研究打开新的研究范式。
我们在研究课题的四个分支取得了如下的研究成果。.(i-a) 传统上,金属-绝缘相变附近的输运标度行为在空间上被认为是各向同性的。我们发现在能带绝缘体和Weyl半金属之间的相变,具有非常规的(空间各向异性)输运标度性质。 (i-b) 近年来,Majorana费米子在凝聚态物理学中引起了许多研究兴趣。我们在三维BDI类模型中,发现了一种由无序所驱动实现的热扩散金属相(“Majorana金属”相)。我们进一步阐明了BDI类拓扑超导体、热扩散金属和常规局域相之间相变的普适类。(ii) 在量子极限下,三维巡回电子系统中电子关联效应的影响尚不清楚。我们构建了一种泛函重整化群 (RG) 方法来研究该体系。使用泛函RG方法,我们确认了半金属在量子极限下的新型电子相。(iii-a) 在我们的工作之前,除了Wu-MacDonald在 TDMC 双层系统中所提出的拓扑激子外,还没有其他的拓扑激子。在他们工作的同一年(几乎同时),我们也提出了一种在陈能带绝缘体模型中的拓扑激子。(iii-b) 在我们的工作之前,尚不清楚自旋-轨道相互作用是如何影响电子-空穴双层系统中的激子凝聚。我们首次证明了,电子层内的相对论性自旋-轨道相互作用会导致一种新型的自旋-轨道耦合激子凝聚,称为螺旋形激子凝聚。(iii-c) 在我们的工作之前,尚不清楚在具有有限大小费米面的费米子系统中,多能带性质和电子关联之间的相互作用会导致什么物理后果。为了回答这个问题,我们研究了具有一对电子和空穴费米面(FSs)的费米子系统,其耦合通过临界 U(1) phi^4 玻色场实现。利用单圈RG分析,我们显示了,当玻色场发生 U(1) 对称性破缺的量子相变时,多能带费米子系统的热力学和磁性质表现出非费米液体行为。(iv) 在我们的工作之前,尚不清楚是什么 U(1) 对称性保护了磁振子陈绝缘体的拓扑稳定性。为了解决这一问题,我们构建了一个无序拓扑磁振子的完整理论,并揭示了相关的 U(1) 对称性是与能量守恒相关联的,而不是自旋旋转对称性。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
感应不均匀介质的琼斯矩阵
动物响应亚磁场的生化和分子机制
拓扑材料中的量子输运特性研究
自旋轨道耦合的拓扑量子系统的理论研究
拓扑材料中量子泵浦效应的研究
自旋轨道耦合玻色凝聚体的拓扑量子态和量子动力学性质