Attention control is strongly associated with human’s complex behavior and unrivaled ability for adaption and perception. Studying attention control of the human brain provides important scientific values to understanding human mind. According to a hierarchical network control hypothesis, the realization of attention control may rely on complex interactions between a large numbers of brain regions which construct functional networks on different hierarchies. In visual attention, from top to bottom, these regions and networks may include the core control network, the dorsal and ventral attention networks, and the visual cortices. Most recent studies also indicated that regulation to the default mode network is also essential in attention control. However, many previous studies were focused on lower cortical systems, local regional activations, or legions. They were insufficient to directly measure the dynamic interaction across the regions or the networks, therefore unable to comprehensively disclose the neural network substrate of attention control. In this study, human participants will be the subjects; multimodality data, including simultaneous fMRI-EEG, structural imaging and DTI, data from both resting state and attentional tasks will be recorded; advanced method such as GLM activation, total interdependence analysis, Granger causality, clustering analysis, graph theoretical analysis, ICA will be employed. This study aims to explore the interaction mechanism of the key regions and networks in the hierarchical network structure and its association with human’s behavior, test and complement the network interaction theory of attention control. The study is helpful to improve the understanding to the interactive neural substrates of human brain’s attention control, and has practical meanings to research and clinical treatment to attention relevant brain diseases and dysfunctions.
注意控制与人类复杂行为、高度适应力和感知力密切相关。研究人脑注意控制对理解心智有重要科学意义。分层网络控制假说认为人类注意控制可能通过若干不同层级脑区/网络的复杂交互实现。对于视觉注意,从上至下,这些脑区/网络可能包括核心控制网络、背侧/腹侧额顶叶注意网络和视皮层;最近研究还表明调控默认网络也是注意控制的重要方面。以往研究大多关注注意的次级皮层系统,或局部激活和损伤,不足以直接检测脑区间动态信息交互,难以从整体上揭示注意控制的神经网络机制。本研究以人类被试为研究对象;采集静息和注意任务下的多模态数据,包括:fMRI,fMIR-EEG同步数据,结构像和DTI;采用GLM、全依赖、Granger因果、聚类、图论等先进方法;研究注意控制分层网络结构交互机制及其和行为的关系;进而验证和补充注意控制的脑功能网络交互理论。本研究有助于深化理解注意的脑机制,对注意相关的脑疾病研究及诊断也有重要实际意义。
注意控制与人类复杂行为、高度适应力和感知力密切相关。研究人脑注意控制对理解心智有重要科学意义。分层网络控制假说认为人类注意控制可能通过若干不同层级脑区/网络的复杂交互实现。对于视觉注意,从上至下,这些脑区/网络可能包括核心控制网络、背侧/腹侧额顶叶注意网络和视皮层;最近研究还表明调控默认网络也是注意控制的重要方面。以往研究大多关注注意的次级皮层系统,或局部激活和损伤,不足以直接检测脑区间动态信息交互,难以从整体上揭示注意控制的神经网络机制。本研究以人类被试为研究对象,采集静息和注意任务下的多模态数据,包括:fMRI,fMIR-EEG同步数据,结构像和DTI,采用GLM、全依赖、Granger因果、聚类、等先进方法,研究注意控制分层网络结构交互机制及其和行为的关系,进而验证和补充注意控制的脑功能网络交互理论。本研究有助于深化理解注意的脑机制,对注意相关的脑疾病研究及诊断也有重要实际意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于SSVEP 直接脑控机器人方向和速度研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于递归注意力神经网络的图文摘要方法研究
基于注意力选择的卷积神经网络仿生正则化及其应用
基于维度相似性的注意与认知控制神经机制研究
基于刺激属性的自上而下的注意控制